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PREFACE

As a graduate student in experimental physics, I found the study
of group theory considered to be a useless ‘high-brow’ luxury.
Furthermore all attempts to follow a lecture course resulted in a
losing battle with characters, cosets, classes, invariant subgroups,
normal divisors and assorted lemmas. It was impossible to learn
all the definitions of new terms defined in one lecture and remem-
ber them until the next lecture. The result was complete chaos.
It was a great surprise to find later on that (1) techniques based
on group theory can be useful; (2) they can be learned and used
without memorizing the large number of definitions and lemmas
which frighten the uninitiated. Angular momentum is presented in
elementary quantum mechanics courses without a detailed analysis
of the Lie group of continuous rotations in three dimensions. The
student learns about angular momentum multiplets and coupling
of angular momenta without realizing that these are the irreducible
representations of the rotation group. He also does not realize
that the algebraic properties of other Lie groups can be applied to
physical problems in the same way as he has used angular momen-
tum algebra, with no need for characters, classes, cosets, etc.
This book began as a short article with the aim of presenting
the ‘group theoretical’ methods used in nuclear structure in a
simple way. Another short article was begun to point out that
bilinear products of creation and annihilation operators lead to
Lie algebras, and to classify the algebras obtained in this way.
These were then combined with a discussion of ‘quasispin’ oper-
ators acting like fictitious angular momenta which arise in various
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areas in physics. This material, now in Chap‘ters 4 and 5, was pres-
ented in a series of lectures at Argonne National Laboratory in
the summer of 1961, discussing simple models of many-particle
systems and the application of group theory. The article thus
became a set of lecture notes.

The Argonne lecture notes were still unfinished when unitary
symmetry appeared and created a demand from high energy
physicists for intelligible lectures on group theory. They wanted to
understand and use unitary symmetry without learning about
characters and cosets. A series of lectures was given at the Univer-
sity of Illinois and the lecture notes had a different emphasis from
the Argonne notes. The audience was interested in unitary sym-
metry and elementary particles, not in nuclear structure and many-
body problems. After several revisions and additions the lecture
notes from Illinois and Argonne were combined and extended to
form this book.

The aim of the book is to show how the well-known techniques
of angular momentum algebra can be extended to treat other Lie
groups, and to give several examples illustrating the application
of the method. Because of the present interest in symmetries of
elementary particles, this particular application is stressed. Chap-
ter 1 presents the essential features of the method by analogy with
angular momentum and points out that bilinear products of crea-
tion and annihilation operators lead to Lie algebras. Chapter 2
presents isospin as the first example of the method. Chapter 3
presents the group SU, and its application to elementary particles.
Chapter 4 gives the treatment of the three-dimensional harmonic
oscillator using SU, and discusses its application to nuclear struc-
ture. Chapter 5 considers the classification of Lie algebras of
bilinear products of creation and annihilation operators, symplec-
tic groups, and the applications to pairing correlations and senior-
ity in many-particle systems. Chapter 6 discusses permutation
symmetry and gives a simplified version of Young diagrams as a
guide to their use. ~

The appendices constitute a large portion of the book and pre-
sent a detailed study of the application of SU, algebra to unitary
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symmetry of elementary particles. Appendix A builds up the struc-
ture of the SU; multiplets by combining fundamental triplets.
Appendix B develops the U-spin method for calculating experi-
mental predictions from unitary symmetry. Appendix C presents
many detailed examples of experimental predictions from unitary
symmetry. Appendix D is a short discussion on the phases which
plague all investigators.

I should like to express my appreciation to many colleagues at
the University of Illinois and Argonne National Laboratory who
forced me to explain this material to them in a series of constantly
interrupted lectures, and to the secretarial staff, particularly
M. Runkel and E. Kinstle who performed the incredible job of getting
the notes out almost before the lectures were given. It is a pleasure
to thank Y. Ne’eman for introducing me to unitary symmetry and
C. A. Levinson and S. Meshkov for showing me how the techniques
they developed for nuclear structure could be used for elementary
particles. I should also like to thank G. Racah for many stimulating
discussions and to acknowledge having learned a great deal from
a series of his seminar lectures which showed how many useful
results could be obtained with the use of simple but powerful
algebraic methods. Finally I should like to thank all my colleagues
at the Weizmann Institute who helped in the preparation of this
book, and particularly L. Mirvish, who typed the manuscript,
R. Cohen, who prepared the figures, and H. Harari for criticism of
the manuscript.
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CHAPTER 1

INTRODUCTION

Physicists have not yet learned to live with group theory in the
same way as they have learned for other mathematical techniques
such as differential equations. When an experimentalist or advanced
graduate student encounters a simple differential equation in the
course of his work, he does not run away and hide, worry about
whether the solution to the equation really exists, or indulge in
mathematical exercises of a ‘high-brow’ nature. He either solves
the equation or goes to the literature and looks up the solution.
On the other hand, many sophisticated theorists who are quite at
home in the complex plane seem to be afraid of what might be
called elementary exercises in group theory. This is all the more
mysterious since many of these so-called group theoretical methods
are in principle no different and no more complicated than certain
mathematical techniques which every physicist learns in a course
in elementary quantum mechanics; namely, the algebra of angular
momentum operators.

The reason for this difficulty may be that physicists have still
not made the separation analogous to that made for differential
equations between those parts of the subject which belong to the
physicist and those which belong to the mathematician. The
standard treatment of group theory for physicists begins with
complicated definitions, lemmas, and existence proofs which are
certainly necessary for a proper understanding of group theory.
However, it is possible for physicists to understand and to use many
techniques which have a group theoretical basis without necessarily
understanding all of group theory, in the same way as he now uses

1



2 INTRODUCTION §1.1

angular momentum algebra without delving deeply into the myster-
ies of the three-dimensional rotation group.

The purpose of this treatment is to show how techniques analo-
gous to angular momentum algebra can be extended and applied
to other group theoretical problems without requiring a detailed
understanding of group theory.

1.1. REVIEW OF ANGULAR MOMENTUM ALGEBRA
Consider three angular momentum operators J,, J, and J, which
satisfy the well-known commutation rules

Uy I, =1, [y Jl=iJ,, V., Jl=iJ,. (L)

From these commutation rules it follows that there exists an
operator
P =TT+ IE

which has the property of commuting with all the angular momen-
tum operators:

W3 J =% J,1=[J3%J.]1=0. (1.2)
Since J? commutes with all the operators, it commutes with any one
of them, and one usually chooses the operator J,. One can then in
any problem find a complete set of states which are simultaneous
eigenfunctions of J? and J, with eigenvalues usually designated by
J and M. We use the conventional designation for these states

\J, M . (1.3)
The remaining two operators J, and J, do not commute with J,,
but the following simple linear combinations
Jy=(,+iJy)) and J_=(J,—iJ,) (1.4)
satisfy particularly simple commutation rules. Since J?> commutes
with all the operators, we have
V2 (J+iT ) =% (J,—iJ)]=0. (1.5)
The commutators with J, are also quite simple,
Va U +iT )= +iJ}),

o Ue=iJ )] = —(J,—iJ,) . (1.6)
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The commutator of each of these operators with J, is just the same
operator again, multiplied by a constant. It then follows that if
either of these operators operates on a state which is a simultaneous
eigenfunction of J? and J, with eigenvalues J and M, the result is
another state which is an eigenfunction of J? with the same eigen-
value J and which is also an eigenfunction of J,, but with the eigen-
value M+ 1.

i), MY =) I +D-MM D) |J,M£1). (1.7)

The value of the coefficient appearing on the right-hand side is
easily obtained by a little algebra. This result and the trivial

T\J, M> = M|J, M> (1.8)

define matrix elements for all of the angular momentum operators
for all of the complete set of states.

Beginning with any particular state, |J, M), a set of states can be
generated by operating successively with the operators (J,+iJ,)
and (J,—iJ,). This process cannot be continued indefinitely be-
cause M can never be greater than J. Thus one finds restrictions on
the possible eigenvalues of J and M, and obtains the well-known
result that these may be either integral or half-integral and that for
any eigenvalue J there corresponds a set or multiplet of 2J +1 states
all having the same eigenvalue of J and having values of M equal
to —J, —=J+1, ..., +J. The full set of states'in a multiplet can be
generated from any one of the states by successive operation with
the operators (J,+iJ ).

Some of these features can be demonstrated simply ip diagrams
of the type shown in Fig. 1.1. These diagrams are one-dimensional
plots of the eigenvalues of J,. Fig. 1.1a represents the operators
(J+iJ,) and (J,—iJ,) as vectors which change the eigenvalue of
J, by *1, respectively. Figure 1.1b illustrates the structure of a
typical multiplet, in this case one with J=2Z, in which a point is
plotted for each value of J, where a state exists in the multiplet.
The operation of any of the operators in Fig. 1.1a on the states in
the multiplet of Fig. 1.1b is represented graphically by taking the
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appropriate vector of Fig. 1.1a, placing it on Fig. 1.1b and noting
which states are connected by this vector.

(a)

-2 -5/2 -3/2 -1/2 172 ¥2 5/2 72
Jz

Fig. 1.1

There are also well-known rules for combining multiplets. A
system may consist of several parts, each of which is characterized
by a multiplet having a particular value of J. (An example of this
would be the orbital and spin angular momenta of a particle.) These
multiplets can be combined to form a multiplet describing the
whole system. (For example, an orbital angular momentum of 2
and a spin of } for a particle can be combined to give a total angular
momentum either of 3 or 3.) Given the J-values for the multiplets
describing parts of the system, there are simple rules for deciding
which possible values of J occur for the total system, and there are
algebraic techniques involving vector coupling coefficients for
expressing the wave functions of the combined system which belong
to a given multiplet. There is also one very simple rule which results
from the different character of the multiplets having half-integral
and integral values of J. If two multiplets having integral values of
J are combined, the multiplet describing the overall system must
also have integral values of J. If two multiplets having half-integral
values of J are combined the multiplets describing the combined
system must also have integral values of J. On the other hand, if a
multiplet having an integral value of J is combined with one having
a half-integral value of J, the multiplet describing the combined
system then must have a half-integral value of J.

So far we have considered only the consequences of the angular
momentum commutation rules (1.1) and have made no mention of
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any Lie group. All the results obtained thus far therefore depend
only on the existence of operators satisfying the angular momentum
commutation rules and are not in any way dependent upon the
cxistence of a continuous group of transformations. Let us now
consider briefly the relation between the angular momentum
operators and the group of continuous rotations in three dimensions.
It is well known that the operators J,, J, and J, can be considered
as generators of infinitesimal rotations. For example, if y is a wave
function for a particular system and J is a total angular momentum
operator for that system then the wave function

Y'=(1+ieJ )y (1.9

represents the state i rotated by infinitesimal angle ¢ about the
x-axis. Similar relations exist for infinitesimal rotations about the
y- and z-axes and finite continuous rotations can be generated from
these infinitesimal rotations. The statement that a Hamiltonian is
invariant under rotations is equivalent to the statement that it
commutes with the three angular momentum operators, since the
latter generate infinitesimal rotations from which all the finite
rotations can be built. By studying the properties of these rotations
and the way wave functions and operators transform under them,
many interesting and useful results can be obtained. These, however,
are not considered in this treatment. Rather we confine ourselves
to those results which are obtainable simply from the algebra of
the angular momentum operators; i.e. from the properties of the
generators of the infinitesimal rotations.

The algebraic relations among the angular momentum operators
are useful in physical problems because these operators are often
simply related to other operators which describe properties of a
physical system. Examples of such operators are the Hamiltonian,
clectric and magnetic moments, and operators inducing transitions.
Operators of physical interest often satisfy very simple commutation
rclations with the angular momentum operators. This is of course
cquivalent to stating that the corresponding physical quantities
transform in a simple way under rotations. The simple transforma-
tion properties are expressed mathematically by the classification
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of operators as scalars, vectors, tensors, etc. These simple trans-
formation properties are also expressible as simple commutation
relations. A scalar operator which is invariant under rotations
commutes with all the angular momentum operators. A vector
operator consists of three components which transform into com-
binations of one another under rotations and which satisfy commu-
tation relations with the angular momentum operators analogous
to those of the angular momentum operators among themselves.

Ve S1=1J,, S1=1J,, S]=0 (1.102)
Ve V=iV, U, Vil=iV, [, V=iV,  (L.10b)

where S'is a scalar operator and (V,, V,, V,) are the components of
a vector operator.

More generally, operator multiplets can be defined in a manner
analogous to the wave function multiplets. These operator multi-
plets are called irreducible tensors and their components transform
into linear combinations of one another under rotations. The
commutators of such tensor operators with the angular momentum
operators have the same form as the step operator relations (1.7)
and (1.8) for angular momentum multiplets

[(Ux£i,), Tigd =Y/ k(k+1)—q(q £ 1) Tegz 1) (1.11a)
Va Tig) = 9T, (1.11b)

where T, is the g-component of an irreducible tensor of degree k,
and the indices k and g are analogous to the angular momentum
eigenvalues J and M for the corresponding wave function multiplet.
Such an irreducible tensor has 2k +1 components and the index g
takes on 2k +1 values from —k to +k.

From the commutation relations (1.11) it follows that irreducible
tensors combine in the same way as angular momentum multiplets
and that the calculation of matrix elements of irreducible tensor
operators between angular momentum eigenstates satisfies angular
momentum coupling rules. This is expressed quantitatively by the
Wigner-Eckart theorem which states that the matrix elements of
different components of the same irreducible tensor between states
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which are members of the same two angular momentum multiplets
are all proportional to one another with coefficients depending only
upon angular momentum algebra and independent of the intrinsic
properties of the operators. All these matrix elements are thus
determined by a single number characteristic of this operator: the
so-called ‘reduced matrix element’.

Let us now review in more detail how angular momentum
algebra is used in physical problems. We consider first the applica-
tion of angular momentum algebra to the solution of the time-
independent Schrodinger equation. There are several possibilities
depending on the form of the commutation relation between the
Hamiltonian and the angular momentum operators.

(1) The Hamiltonian commutes with all the angular momentum
operators. Then a complete set of eigenstates of the Hamiltonian
can be found which are also eigenfunctions of J? and J, and the
2J +1 states of a multiplet are all degenerate eigenstates of the
Hamiltonian. The use of the angular momentum algebra therefore
simplifies the solution of the eigenvalue problem for the Hamiltonian
by defining two integrals of the motion; i.e. two quantum numbers
which can be used to specify the eigenstates of the Hamiltonian.
Note that J, or J, could also be chosen instead of J, to specify the
states, which would then be linear combinations of the eigenfunc-
tions of J,.

(2) The Hamiltonian does not commute with all the angular
momentum operators but still commutes with J? and J,. An exam-
ple of this case is the motion of a spinless charged particle in a spheri-
cally symmetric field with an additional uniform magnetic field in
the z-direction. The Hamiltonian for this case would have the form

H=H,+KJ, (1.12)

where H, commutes with all the angular momentum operators and
the K is a constant. For this case, the eigenstates of the Hamiltonian
can still be chosen to be simultaneous eigenfunctions of J? and J,,
but the 2J +1 states of a multiplet are no longer degenerate. The
splitting of the energy levels in a multiplet is determined by the
terms in the Hamiltonian that do not commute with J, and J,.
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For the example (1.12) the energy levels within the multiplet are
equally spaced with a splitting K between adjacent levels, as a result
of the term KJ,. Note that for this case it is not possible to choose
J or J, rather than J, to specify the states, as J, and J, do not
commute with the Hamiltonian.

(3) The Hamiltonian does not commute with all the angular
momentum operators, but the commutators have a simple form.
The example (1.12) satisfies this criterion, since

[H, (U £1J))] = KU, %1T,). (1.13)

The commutators can be used to determine properties of the energy
spectrum of the Hamiltonian. For example, given any eigenfunc-
tion { of the Hamiltonian (1.12) we can generate other eigenfunc-
tions using the commutator (1.13).

Hy=Ey, (1.14a)
H(J,£iJ W =(E£K)J T )Y . (1.14b)

This result (1.14) leads again to the conclusion that the energy
spectrum of the Hamiltonian (1.12) consists of sets of equally
spaced energy levels with a spacing K between adjacent members.
Although in this simple case these conclusions were evident by
inspection of the Hamiltonian (1.12), there are many other cases
where commutation relations analogous to (1.13) lead to non-trivial
results.

The commutation relations (1.13) can be considered as the equa-
tions of motion of the operators J,+iJ,. The content of equations
(1.13) and (1.14) can also be described by saying that operators
which ‘satisfy simple equations of motion’ can be used to generate
excitations of a system.

(4) Any of the properties above apply not to the exact Hamil-
tonian but to an approximate Hamiltonian which is used as a basis
of perturbation theory. The treatment of the unperturbed Hamil-
tonian is then simplified by the use of the angular momentum
algebra as described above.

If the perturbation is expressed simply in terms of irreducible
tensors, the first-order perturbation result for the energy splitting



§1.2 INTRODUCTION 9

within a given angular momentum multiplet is given directly by the
Wigner-Eckart theorem in terms of a single parameter depending
on the perturbation. Common examples are the Zeeman and quad-
rupole splittings arising when nuclear, atomic or molecular systems
are placed in external fields.

The angular momentum algebra is used in a similar manner in
time-dependent problems such as decay and reaction processes
where one considers a transition between an initial state and a final
state. If the Hamiltonian commutes with all the angular momentum
operators, then angular momentum must be conserved in the transi-
tion from the initial state to the final state. If the initial state is not
an angular momentum eigenfunction (e.g. a plane wave) it is often
useful to expand it in angular momentum eigenfunctions (partial
wave expansion) because of the conservation of angular momentum.
Each angular momentum eigenvalue (partial wave) then defines an
independent channel for the reaction which is uncoupled from the
other channels. This decoupling of the different channels allows
the scattering process to be treated separately for each channel,
thereby greatly simplifying the solution of the Schrddinger equation.

1.2. GENERALIZATION BY ANALOGY OF THE ANGULAR
MOMENTUM RESULTS

Starting from the simple commutation rules (1.1) we have found
a classification scheme for the states of a quantum mechanical
system in which angular momentum operators have simple proper-
ties. The states are divided into sets or multiplets such that the
matrix elements of all angular momentum operators vanish between
states belonging to different multiplets. Within each multiplet the
action of the angular momentum operators is very simple. Appro-
priate linear combinations of these operators can be chosen such
that they are either diagonal like J, or ‘step operators’ like J, +iJ »
The latter simply change the eigenvalue of the state on which they
are operating and thus jump from one state to another through the
multiplet.

We now assert without proof: Whenever one encounters a set of
operators satisfying similar commutation rules, one can play the
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same game. One can define multiplets and suitable linear combina-
tions of the operators such that these operators are either diagonal
in the representation defining the multiplets or act like step operators
within a multiplet. The matrix elements of all operators between
states of different multiplets vanish. Those readers who are inter-
ested in the general proofs underlying these assertions are referred
to the standard literature on group theory. Those who are not
interested in the proofs can see in the material which follows
examples of how the game can be played quite usefully in specific
cases by simply going ahead and constructing the representations
and the multiplets.

In the remainder of this section we state more precisely what
exactly is meant by ‘playing the game’. In the following section
some general arguments concerning the algebra of second quantized
operators are given to show why such sets of operators can be
expected to occur frequently in physics. In the remainder of this
book we deal with a number of specific examples showing how the
technique can be used.

Let us now assume that we have a finite number of operators X,
which satisfy commutation rules similar to those of the angular
momentum operators; namely that the commutator of any two of
the operators is a linear combination of the operators of the set:

X, X]=YC,, X (1.15)

where the coefficients CZ, are constants. A set of operators satis-
fying such commutation rules is called a Lie algebra. We now assert
that from these operators we can construct operators like J* which
commute with all the operators of the set. There may be only one
such independent operator, like J? in the case of angular momenta,
or there may be more than one. We shall call such operators C,.
These operators are sometimes called Casimir operators.

[Ch X,]=0 for all p, 0. (1.16)

We now choose one of the operators of the set, as we chose J, for
angular momentum, to be diagonal in the representation we shall
define. It may be possible to choose more than one such operator.
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1f there are many operators in the set there may be operators within
the set which commute with one another. We shall choose as many
commuting operators as we can find and denote them by the letters
H,. These operators H; also commute with the Casimir operators
C,, since the latter commute with all the operators of the set. We
can therefore find a complete set of states in any problem which are
simultaneous eigenfunctions of all the operators C, and H;, with
eigenvalues C, and H;

IC Hi) (1.17)

analogous to the complete set of states |J, M) for angular momen-
tum. We now further assert that the remaining operators of the set
can all be expressed in terms of a linearly independent set of step
operators. We call these operators

E, (1.18)

and state that they satisfy the following simple commutation rules:
[C, E]=0, (1.19)

[H;, E,] =o,E,. (1.20)

These are directly analogous to the commutation rules satisfied by
the operators J,+iJ,. The operators E, commute with all of the
operators C,, since the latter commute with all of the operators of
the set. Furthermore, the commutator of an operator E, with an
operator H, gives always the same operator E, multiplied by a
constant «; depending upon the particular operators H; and E,.
The operators E, are thus step operators which shift the eigenvalue
of the operators H; by an amount «,. Thus

EalC:p H:> = K(C;s a, H;)IC;:s H:+al> (121)

where the constant K(C,, «, H/) can be determined by algebraic
mcans in a manner similar to the corresponding constants for the
angular momentum operators, but which may involve more te-
dious calculations if there are more operators in the set. Thus
¢q. (1.21) together with the trivial result
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define the matrix elements for all of the operators of the set for a
complete set of states.

Note that beginning with any particular state |C,, H;), a set of
states can be generated by operating successively with the step
operators E,. In this way one can generate sets of states or multi-
plets. Using the explicit form of the coefficients in eq. (1.21) and
limitations on the size of the multiplet, one can arrive at the struc-
ture of the multiplet in the same way as one finds that angular
momentum multiplets consist of 2J 41 states having eigenvalues of
M changing in steps of one from —J to +J.

Diagrams similar to those of Fig. 1.1 can be drawn to represent
any Lie algebra and the associated multiplets. However, if there are
several operators H; which are simultaneously diagonal, several
quantum numbers are then required to specify the position of a
state in the multiplet. In such a case, the diagrams are not one-
dimensional as in Fig. 1.1, but r-dimensional where r is the number
of simultaneously commuting operators H; which exist in the set.
The Lie algebra is then said to be of rank r. The angular momentum
algebra is thus of rank 1.

There are general rules for combining multiplets like there are
rules for coupling angular momenta. For any particular set of
multiplets describing parts of the system, one can find which
multiplets arise in describing the total system, and coefficients
analogous to the vector coupling coefficients can be defined for
expressing the wave functions of the combined system which. belong
to a given multiplet. There may also be other divisions of the kinds
of multiplets into different groups analogous to the division of
angular momentum multiplets into integral and half-integral angular
momenta and there may be particularly simple rules like those for
angular momenta regarding the combining of multiplets from the
same or different sets.

A continuous group of transformations can be defined from these
operators by defining infinitesimal transformations in a manner
similar to those defined for rotation. Consider, for example, the
transformation

Y =1 +ieX )y . (1.23)
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A continuous group of transformations can be built up from the
infinitesimal transformations generated in this manner by each of
the operators of the Lie algebra. Such a continuous group of trans-
formations is called a Lie group. In the conventional treatment, one
starts with a continuous group and finds the underlying Lie algebra.
We do the reverse beginning with the Lie algebra and we may not
even talk about the associated Lie group at all. The results which we
use are those summarized in eqs. (1.15)—(1.22). These depend only
on the existence of the Lie algebra and do not require the existence
of the associated Lie group. We shall also see that physical problems
often arise in which the Lie algebra appears naturally in the
physical conditions of the problem, while the associated Lie group
does not have any simple physical interpretation. The main use for
the Lie group in these cases is to provide a convenient label for the
Lie algebra and thus indicate where useful studies of this algebra
may be found in the literature.

Multiplets of operators or irreducible tensors can be defined for
any Lie algebra in a manner analogous to those for angular momen-
tum. One finds sets of operators which can be placed in a one-to-one
correspondence with particular multiplets. The commutators of
such irreducible tensor operators with the operators E, and H; of
the Lie algebra are analogous to the corresponding relations (1.21)
and (1.22) for the wave function multiplets. The commutator of a
particular component of an irreducible tensor operator with a step
operator E, is just the appropriate component of the same irre-
ducible tensor, whereas the commutator with the diagonal operators
H,; of any component of an irreducible tensor gives the same com-
ponent again. Matrix elements of different components of an irre-
ducible tensor operator between two states within the same two
multiplets are related by a generalization of the Wigner-Eckart
theorem. In the general case, there may be more than a single re-
duced matrix element required to determine all the matrix elements
completely, a situation which does not arise in the angular momen-
tum algebra.

The application of the Lie algebra to a physical problem is
directly analogous to the corresponding application of the angular
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momentum algebra. The application to the solution of the time-
independent Schrodinger equation depends upon the form of the
commutation relations between the Hamiltonian and the operators
of the Lie algebra. Again there are several possibilities:

(1) The Hamiltonian commutes with all the operators. A com-
plete set of eigenstates of the Hamiltonian can be found which are
also eigenfunctions of all the operators C, and H;. All the states
within a multiplet are degenerate eigenstates of the Hamiltonian.
The use of the Lie algebra therefore simplifies the solution of the
eigenvalue problem for the Hamiltonian by defining a number of
integrals of the motion; i.e. quantum numbers which can be used
to specify the eigenstates of the Hamiltonian.

(2) The Hamiltonian does not commute with all of the operators
of the algebra but still commutes with the operators C, and H;.
One can still define a complete set of eigenfunctions of the Hamil-
tonian which are also eigenfunctions of these operators but the
states within a given multiplet are no longer degenerate.

(3) The Hamiltonian does not commute with all the operators of
the Lie algebra but the commutators have a simple form. The Lie
algebra is still useful in determining the eigenfunctions and eigen-
value spectrum of the Hamiltonian. Some of the operators of the
Lie algebra may be considered as satisfying simple equations of
motion and generating elementary excitations of the system.

(4) Any of the properties above apply not to the exact Hamil-
tonian but to an approximate Hamiltonian which is used as a basis
of perturbation theory. The treatment of the unperturbed Hamil-
tonian is then simplified by the use of the Lie algebra as described
above. If the perturbation or ‘symmetry-breaking’ part of the
Hamiltonian is expressed simply in terms of the generalized irre-
ducible tensors, the first-order energy splittings are given by the
generalized Wigner-Eckart theorem.

Similar relations are obtainable for the study of transitions from
an initial to a final state. If the Hamiltonian commutes with the
operators of the Lie algebra and the initial state is an eigenfunction
of the operators C, and H,, the final state must also be an eigen-
function of these operators with the same eigenvalues. If the initial
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state is not an eigenfunction of these operators, it can be expanded
in these eigenfunctions. Each non-vanishing term in the expansion
then defines a ‘channel’ through which the reaction can proceed.
The most common application is to reactions in which the initial
state consists of two particles, an incident particle and a target.
Both particles in the initial state may be represented by wave func-
tions which are individually eigenfunctions of the operators C,
and H;. The state of the combined system is then an eigenfunction
of the operators H; with an eigenvalue equal to the sum of the two
corresponding eigenvalues. However, the state of the combined
system is in general not an eigenfunction of the operators C,ltisa
linear combination of eigenfunctions of C, with different eigenvalues
in the same way that the product of two angular momentum eigen-
functions is generally not an angular momentum eigenfunction but
is some linear combination of angular momentum eigenfunctions.
The different eigenvalues of C, each define an independent reaction
channel which is uncoupled from the others, analogous to angular
momentum partial waves.

The relation of the Lie algebra to the physical problem can also
be expressed as some symmetry of the Hamiltonian, just as angular
momentum algebra is related to the invariance of the Hamiltonian
under rotations. A formal symmetry can always be obtained if the
operators of the Lie algebra satisfy simple commutation relations
with the Hamiltonian. The continuous group of transformations
constructed from relations like (1.23) must also transform the
Hamiltonian in a simple way. However, these continuous trans-
formations may not have any clear physical meaning, in contrast to
the case of rotations. In such cases, the symmetry of physical inter-
est associated with the Lie algebra may be certain discrete transfor-
mations. Examples of this type are given in the following chapters.

1.3. PROPERTIES OF BILINEAR PRODUCTS OF SECOND
QUANTIZED CREATION AND ANNIHILATION OPERATORS
Let af and a, be creation and annihilation operators for a particle
in a quantum state k. The pedestrian reader should not be alarmed
by the sudden appearance of second quantized field operators since
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we shall use them only in a very simple way. Consider first operators
creating and annihilating bosons. These operators satisfy the com-
mutation rule

[a, aj]=1 (1.29)

for the annihilation and creation operators of the same quantum
state k. Commutators involving two different states all vanish.
We can construct bilinear products of these operators having the
form a}a,, alal and a,a,. Note that the commutator of any two
such bilinear products is either zero or a linear combination of

bilinear products such as, for example, the commutator
[(akaTm), (‘1;“:)] = aTmaI ’ (125)

assuming that the states k, m and » are all different. In any such
commutator an annihilation operator in one member kills off a
creation operator in the other member according to the commuta-
tion rule (1.24), thus leaving only the remaining two operators and
giving a bilinear product. The commutation rule (1.25) is just the
kind of expression that we need to.define a Lie algebra. If we have a
finite number of states k and construct all possible bilinear combi-
nations of creation and annihilation operators, the commutator
of any two bilinear products gives a linear combination of members
of the set of bilinear products. A Lie algebra is therefore defined.
It is perhaps surprising to note that a Lie algebra is also defined
for bilinear products of fermion creation and annihilation operators.
Although it is not the commutation rules of fermion operators
which are normally defined but the anticommutation rules, it
turns out that these reduce to ordinary commutators where bilinear
products are involved. As an example, consider the commutator

[ax, (afa,)] (1.26)
of the fermion annihilation operators a, with the bilinear product
a} a,,. These fermion operators satisfy the anticommutation relations

apay + a,Iak =1,
apd,, +a,a,=0, (1.27)

ala, +a,al=0.
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Using these anticommutation relations we find that the commutator
(1.26) can be simplified:

Lav, (ala,)] = arala, — ala,a, = acala, + afaa, = a,.  (1.28)

The commutator of a single fermion operator and a bilinear prod-
uct of fermion operators is again a single fermion operator or, in
general, a linear combination of single fermion operators. Thus
the commutator (rather than the anticommutator) of two bilinear
products of fermion operators is a linear combination of bilinear
products of fermion operators. Such bilinear products also form a
Lie algebra if one considers a finite number of states k and all
possible bilinear products.

We now see how Lie algebras can arise very naturally in many
physical problems. Bilinear products of second quantized creation
and annihilation operators can be of interest physically in a wide
variety of problems either in field theory or inmany-particlesystems.
Before examining specific cases, let us just make a few further gener-
al observations about the kinds of bilinear product which can arise.

‘We have already noted that there are two types of bilinear prod-
ucts: those referring to boson operators and those referring to
fermion operators. The Lie algebras defined by bilinear products of
boson operators are simply related to those for fermion operators
with a few small differences. The commutators have the same struc-
ture, but there may be a difference of sign in some commutators
between the boson and the fermion case. The operators aal or
a,a, which either create or annihilate a pair of particles in the
same quantum state are perfectly reasonable operators for the
boson case. However, for the fermion case, these operators vanish
identically because of the Pauli principle (or the anticommutation
relations).

The bilinear products can also be divided as follows: There are
those like aa,, the product of a creation and an annihilation
operator, which annihilate one particle and create another and
therefore do not change the number of particles in the system.
There are also those like a} a}, or a,a,, which either create a pair of
particles or annihilate a pair of particles and therefore change the
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number of particles in the system. The commutator of a pair of
bilinear products, each of which does not change the number of
particles in the system, gives a linear combination of operators
which also do not change the number of particles in the system.
One can therefore construct Lie algebras containing only those
bilinear products which do not change the number of particles.
Thus if one considers the most general Lie algebra which can be
constructed from a particular finite set of creation and annihilation
operators, one finds that this includes operators of both types:
those which change the number of particles, and those which do
not. Another Lie algebra is formed by a subset of these operators
consisting of all operators of the set which do not change the
number of particles.



CHAPTER 2

ISOSPIN. A SIMPLE EXAMPLE

2.1. THE LIE ALGEBRA

The simplest case of a Lie algebra generated from bilinear products
of creation and annihilation operators is the case where there are
only two quantum states. This is just the case of ‘old-fashioned’
isopin as it was originally conceived for systems of neutrons and
protons before the discovery of mesons and strange particles. Let
a; and a be operators for the creation of a proton and a neutron,
respectively, and let a, and a, be the corresponding annihilation
operators. For the present we do not consider the space and spin
states of these particles and assume that there is only one quantum
state for the proton and one quantum state for the neutron. We
shall put in the space and spin later.

Let us now construct the Lie algebra of all possible bilinear
products of these operators which do not change the number of
particles. These are products of one creation operator and one
annihilation operator. Since there are two possible operators of
each type, there are in all four possible bilinear products which
do not change the number of particles:

t t

t
a,a,, a,a,, a,

t

a, and aga,.

P

The first of these operators annihilates a neutron and creates a
proton in the same quantum state; i.e. it changes a neutron into a
proton. The second operator does the reverse, changing a proton
into a neutron. These two operators are thus the ordinary isospin
operators 7, and 7_. The other two operators annihilate either a

19
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proton or a neutron and create the same particle back again. These
are just number operators which count the number of protons and
neutrons. The sum of the last two operators is just the total number
operator which counts the number of nucleons. Since all of the
other operators do not change the number of nucleons, this total
number operator commutes with all the others. It is therefore con-
venient to divide the set of four operators into a set of three plus
the total number, or baryon number, operator which commutes
with all of the others.

B= af,ap +ala,, (2.1a)
T, =ala,, (2.1b)
T_= a:’,ap R (2.1¢)
1o =1%(ala,—ala,)=Q—1B. (2.19)

The operator 7, defined as half the difference between the num-
ber of protons and the number of neutrons is just equal to the total
charge Q minus half the baryon number, since the protons carry
one unit of charge and the neutrons carry no charge. The operators
7,4, T7— and 7, satisfy commutation rules exactly like angular mo-
menta

[t0s T4]l=74, (2.2a)
[to, T-1=—7_, (2.2b)
[ty,t-1=21,. (2.2¢)

This has led to the designation isospin for these operators and to
the description of rotations in a fictitious isospin space. Since the
commutation rules for the isospin operators are exactly the same
as those for angular momenta, we can immediately take over all
of the results of angular momentum which follow from the commu-
tation rules. However, let us first put in the space and spin degrees
of freedom for the proton and neutron. Let azk represent the crea-
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tion operator for a proton in a quantum state k£ where the letter &
indicates both the space and the spin state, and similarly for neu-
trons and for the annihilation operators. The isospin operators
defined by eq. (2.1) can now easily be generalized simply by adding
the index k everywhere and summing over the index &

B= ;a;,‘apk +alam, (2.3a)
T, = ;azkank , (2.3b)
T_= Ekza:’,kapk , (2.3¢)
To= %;(a;‘,kap,‘ —ala)=0-1B. (2.3d)

The commutation rules (2.2) are also valid for the new definitions
(2.3) of the isospin operators. Since bilinear products corresponding
to two different quantum states k£ and k" commute, the only terms
in any commutator which give a non-vanishing contribution are
those which refer to a single quantum state k. Thus, each quantum
state k acts independently in the commutator and the operators ob-
tained are always a sum over all values of k. Since the summation
over the space-spin indices does not affect the Lie algebra, the sim-
pler notation of eq. (2.1) is used from this point, with the under-
standing that this is a shorthand for writing down the more cum-
bersome expressions (2.3) involving sums over the space-spin in-
dices.

By analogy with angular momentum we see that there exists an
operator T2 analogous to J2, which commutes with all the operators
(2.3). States of a neutron-proton system can be classified into
multiplets, each characterized by an eigenvalue of the operator T2,
Each state can be chosen to be a simultaneous eigenfunction of 7,
and T2 The eigenvalues of T have the form T(T+1) where T is
either an integer or a half-integer. Each multiplet consists of 27"+ 1
states with eigenvalues T, of the operator 7, varying in the steps of
unity from —7 to +7.
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The relation (2.3d) expressing the operator 7, in terms of the
charge and baryon number indicates independently that this oper-
ator can have only integral or half-integral eigenvalues. Such con-
siderations can be useful in other cases where the result is not al-
ready known by the direct analogy with angular momentum. We
also obtain certain rules for combining multiplets directly by noting
that the total charge and the total baryon number are additive
quantum numbers and therefore 7, also is additive. Thus if a system
consists of several parts, each of which is in a state which is an
eigenfunction of t,, the whole system is described by a state which is
also an eigenfunction of 7, and the eigenvalue is simply the sum of
the eigenvalues of the separate parts. Thus if two multiplets having
integral values of T, are combined, the multiplet describing the
overall system must also have an integral value of 7, and similarly
for two multiplets having half-integral values of T,. On the other
hand, if a multiplet having an integral value of T, is combined with
one having a half-integral value the multiplet describing the com-
bined system then must have half-integral values of T,.

Let us now consider which Lie group is associated with these
isospin operators. By analogy with the angular momentum oper-
ators, we allow these operators to generate infinitesimal transfor-
mations such as

V' ={1+ie(ts +T)h . 2.4

We use the linear combination 7, +7_ because these operators
individually are not hermitean. Note that such a transformation
changes a proton or a neutron into something which is a linear
combination of the proton and neutron state. These transformations
are thus transformations on complex vectors in a two-dimensional
proton-neutron Hilbert space. The transformations are unitary;
thus the Lie group associated with isospin is some group of unitary
transformations in a two-dimensional space.

The whole group of unitary transformations in a two-dimensional
space is generated by the set of four operators (2.3) including the
baryon number B. The unitary transformations generated by the
operator B are of a very trivial nature, namely, multiplication of
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any state by a phase factor. Since the three isospin operators form
a Lie algebra by themselves, the associated continuous group is a
subgroup of the full unitary group in two dimensions. This group is
usually called the special unitary group or unimodular unitary
group and denoted by the letters SU,. This is the group of unitary
transformations which are represented by the matrices having a
determinant of +1. Such transformations clearly form a group by
themselves since the product of any two matrices having a deter-
minant of +1 is also a matrix having a determinant of +1.

Thus isospin transformations are two-dimensional unitary trans-
formations rather than three-dimensional rotations. There is no
three-dimensional space which has any direct physical interpreta-
tion. The analogy with angular momentum is purely formal, and
arises because the Lie algebra of operators generating unitary
transformations in a two-dimensional space happens to be the same
as the algebra of the operators generating rotations in a three-
dimensional space.

Operators satisfying commutation rules like angular momenta
mysteriously arise in a number of physical problems. These are
often called ‘quasispins’ but have no direct physical interpretation
in terms of any rotation in a real three-dimensional space. The
reason why such quasispins often occur is that there is only one Lie
algebra of rank 1, where the states within a multiplet are specified
completely by one quantum number and where the diagram of the
multiplet as shown in Fig. 1.1 is a one-dimensional plot. This algebra
is just the angular momentum algebra. Thus no matter what kind
of transformation is being considered, rotations, unitary trans-
formations, or more complicated ones such as symplectic trans-
formations (cf. § 5.4), these all give a Lie algebra which is the same
as the angular momentum algebra when the number of dimensions
in the space where the transformations are taking place is sufficiently
small so that the Lie algebra must be of rank 1. There is no real
physical three-dimensional space associated with these quasispins.
The descriptions in terms of rotations in quasispin or isospin space
are purely formal, have no direct physical meaning, and are useful
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only because we are familiar with the algebraic properties of angular
momentum operators.*

2.2. THE USE OF ISOSPIN IN PHYSICAL PROBLEMS

The algebra of isospin operators is useful in physical problems in-
volving nucleons because of the charge independence of nuclear
forces. This implies that the Hamiltonian describing nuclear forces
commutes with the three isospin operators, (2.3), and that states of
nucleons can be classified into multiplets characterized by the value
of the total isospin quantum number T. There are, of course, elec-
tromagnetic forces which are not charge independent. However,
these are weak in comparison with the nuclear forces and can be
considered as a perturbation. The different states of an isospin
multiplet are therefore not degenerate; there is a small splitting
due to electromagnetic effects.

The isospin Lie algebra takes on added significance when mesons
and strange particles are introduced. These are easily incorporated
into the isospin scheme. All the results regarding isopin multiplets
and matrix elements of operators follow from the commutation
rules (2.2) and do not depend upon the specific definition of the
isospin operators (2.3) in terms of neutrons and protons. The new
particles are therefore included in the isospin scheme simply by
requiring that they fit into isospin multiplets characterized by a
particular value of T and that there are 2T +1 states in a multiplet
with eigenvalues T, of the operator 7, which vary in steps of unity
from —T to +7T. The isospin operators are now no longer defined

* One may note here that the continuous group of isospin transformations
is very peculiar since they transform physical nucleon states into states which
contain linear combinations of neutrons and protons. Such linear combinations
are never observed physically because of charge conservation and it has been
suggested that such states do not exist in the Hilbert space describing physical
states because of superselection rules. It is therefore perhaps satisfying that all
of the useful isospin results can be obtained directly from the Lie algebra which
involves only physical operators acting upon physical states and that the un-
physical Lie group of continuous transformations is not required in order to
obtain any of these results.
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by eqs. (2.3) which apply only to nucleons, but can be completely
defined by the relations which give the matrix elements of the
operators within a particular multiplet.

2T To) =Y T(T+)-To(To£ DIT, To£1)  (2.52)

ol T, To) = TolT, Tp). (2.5b)
A typical multiplet is shown in Fig. 2.1.
T m° L The relations (2.3d) between
1 o y the operator 7, and the charge

and baryon number no longer
hold since these refer only to
nucleon systems. However, the rules for combining multiplets having
integral or half-integral eigenvalues of 7, remain valid. They are a
general property of the Lie algebra and do not depend specifically on
the assumption that all states are made up of neutrons and protons.

Let us now examine some of the physical implications and conse-
quences of extending the isospin formalism to particles other than
nucleons. We first note that the experimentally observed charge
independence of nuclear forces requires that the interactions in
any system of nucleons are not changed under the isospin transfor-
mations which transform neutrons and protons into one another.
This implies that any particles which interact strongly with nucleons
must also transform in a simple way into other particles having
different charges. Otherwise the contribution of these particles to
the nuclear forces would change when protons are changed into
neutrons and the overall charge independence of nuclear forces
would be violated. The incorporation of all strongly interacting
particles into the isospin formalism therefore follows from the
experimentally observed charge independence of nuclear forces.

The extension of isospin to other strongly interacting particles
leads to the following types of experimental predictions:

Fig. 2.1

A. Predictions from the multiplet structure
1. Classification. The most obvious prediction is that all new
strongly interacting particles which are found and all resonances
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observed between strongly interacting particles must belong to
isospin multiplets. Once one member of a given multiplet is found,
all the other members of the multiplet must also exist.

2. Couplings. If one considers resonances between two particles,
the multiplet structures which can atise are determined by the
isospin coupling rules. For example, all resonances of pions (T'=1)
and nucleons (T'=%) must belong to multiplets having either T=1%
or T=3.

B. Predictions of relations between matrix elements

1. Decays. The decay rates or widths of resonances belonging
to the same isospin multiplet are related by isospin coupling rules.
Consider, for example, a nucleon—pion resonance having T'=3.
There are four charge states for this isospin multiplet and six possible
decay modes, since all charge states of the nucleon—pion system are
possible final states for the decay. The transition matrix elements for
all six decay modes are proportional to one another; i.e. they are
all proportional to the same reduced matrix element with a pro-
portionality factor which 1s a Clebsch—-Gordan coefficient for the
coupling of T=1 to T'=1 to give a total T=3.

2. Reactions. Cross sections for different reactions involving
members of the same multiplets are related in a manner involving
isospin coupling rules (usually involving some vector addition or
Clebsch—-Gordan coefficients). For example, if one is considering
pion-nucleon scattering including both elastic and charge exchange
processes, one notes that there are three pion states and two nucleon
states and thus six possible elastic scattering reactions. There are
also two independent charge exchange reactions (n* n—n°p and
n~ p—n°n) giving a total of eight. On the other hand, any pion—
nucleon state can be expressed as a linear combination of members
of a multiplet having =4 and a multiplet having T=3. Since the
interaction responsible for the scattering conserves isospin, there
are only two independent channels, and all the eight processes
considered should have their cross sections expressible in terms of
two complex amplitudes, the 7=1 amplitude and the 7’=3% ampli-
tude. Thus eight experimental cross sections are determined by
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three real parameters: the magnitudes of the two scattering am-
plitudes and the relative phase. This result can be expressed
as predictions of relations between the various elastic and charge
exchange scattering cross sections of pions and nucleons. Similar
relations exist for all reactions involving strongly interacting
particles.

3. Selection rules. One can also find selection rules which result
from isospin. For example, if one considers only nucleons and
pions, states having an odd baryon number must belong in a multi-
plet with a half-integral isospin, whereas states with an even baryon
number must belong in a multiplet having an integral isospin. From
this we obtain a general selection rule: a state that does not satisfy
these conditions cannot decay into any combination of nucleons
and pions by strong interactions which are invariant under the
isospin transformations (i.e. whose Hamiltonian commutes with
the operators (2.3)). The X-hyperon with odd baryon number
and integral isospin and the K-meson with baryon number zero
and half-integral isospin are examples of this selection rule and
they can only decay by weak interactions in which isospin is not
conserved. -

C. Symmetry-breaking effects

The above predictions all follow from the assumption that the
Hamiltonian describing strong interactions is invariant under
isospin transformations; i.e. it commutes with the isospin operators.
The isospin formalism is useful in making predictions also for the
case where the Hamiltonian is not invariant under isospin trans-
formations, if its transformation properties can be expressed in a
simple way. This is the case for the electromagnetic interaction
which is not charge independent and which does not commute
with the isospin operators 7, and t_. The electromagnetic inter-
action behaves under isospin transformations like a linear combina-
tion of an isoscalar and an isovector. This can be seen by noting that
within any isospin multiplet the electric charge of a particle is the
sum of a constant and the eigenvalue T,,. The constant commutes
with all the isospin operators. T, is the eigenvalue of an operator
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7, which is a member of an isospin triplet; i.e. it behaves like a mem-
ber of an isospin multiplet with T=1.

This transformation property is particularly useful in cases where
the electromagnetic interaction can be treated as a perturbation.
Let us consider the operation of the electromagnetic interaction on
a particular state [T, To)

E|T, To) = (L+1)T, To) (2.6)

where I, and I, are the isoscalar and isovector parts, respectively,
of the electromagnetic interaction E. We first note the following
selection rule: The isoscalar part of the electromagnetic interac-
tion commutes with all of the isospin operators and therefore
cannot change the eigenvalues of 7" and T,. The isovector part
behaves like an element of a T=1 multiplet which is coupled by
ordinary angular momentum coupling rules. Thus 7/, has non-
vanishing matrix elements only between the state |T, 7)) and states
of total isospin T+1, T and T—1 and has no matrix element con-
necting two T'=0 states. We also note that the matrix elements of
I, between different pairs of states in the same isospin multiplets are
related by the Wigner-Eckart theorem.

If we are considering a reaction which goes via first-order pertur-
bation theory in the electromagnetic interaction, the transition
probability depends upon the matrix elements of the electromag-
netic interaction between the initial and final states. We thus obtain
selection rules and relations between reactions involving members
of the same isospin multiplets.

If the reaction considered does not go by first-order perturbation
theory, more complicated relations are obtained. If we are con-
sidering an nth-order process, the electromagnetic interaction oper-
ator acts n times. If we wish to consider the corresponding isospin
coupling we must consider all possible couplings of n isovectors as
well as the replacement of some of these isovectors by isoscalars.
The situation in the general case is therefore so complicated that
useful predictions are rarely obtained. However, since many
radiative processes are of first order useful predictions of the kind
described above can often be obtained.
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2.3. THE RELATION BETWEEN ISOSPIN INVARIANCE AND
CHARGE INDEPENDENCE

Although the invariance of strong interactions under isospin trans-
formations is synonymous with the charge independence of forces
between nucleons, the forces between other kinds of particles are
not necessarily charge independent. It should be emphasized that
isospin invariance does not, for example, require that forces be-
tween pions be charge independent. To see this let us first examine
how isospin invariance implies the charge independence of forces
between nucleons and we shall see that the same arguments are not
valid for pions.

Consider the interaction between two nucleons in a state which is
antisymmetric in space and spin. Such a space-spin state has three
possible charges: it can be a two-proton state, a two-neutron state,
or a proton-neutron state. The isospin formalism says that these
three states form an isospin multiplet with T'=1. If the interactions
are invariant under isospin transformations; i.e., they commute
with the isospin operators, then the interaction must be the same
in every state of the multiplet. The proton—-proton, proton-neutron
and neutron-neutron interactions are thus all the same in states
which are antisymmetric in space and spin. For states which are
symmetric in space and spin there is no argument since such states
can only be neutron-proton states with no possibility of other char-
ges.

Let us now consider the interaction of two pions in a state which
is symmetric in space (no spin). Such a state has six possible charge
states: (n*,n%), (n”,n7), (=% %), (x*,7°), (=% ") and (n~, 7).
The isospin formalism says that two pions in a symmetric spatial
state can have either T=0 or T=2. In other words, the six space-
symmetric charge states of two pions form two isospin multiplets:
a quintet and a singlet. If strong interactions are invariant under
isospin transformations, then the interaction between two pions
must be the same for any state within a given multiplet. However,
the isospin invariance makes no prediction of the relation between
the interaction of two pions in the 7=2 state and in the T=0 state.
Thus the interaction of two pions is not the same in all six possible
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charge states. The two neutral states, (x*,n”) and (n°,n°) are both
linear combinations of the two isospin states, T’=2 and T=0, and
the interaction is therefore determined by the two parameters
specifying the interactions in these two states. Thus, isospin in-
variance does not require that the forces between two pions be charge
independent.

We see that isospin invariance requires charge independence only
for the forces between pairs of particles which form an isospin
doublet with T'=1 like the nucleons. For all higher multiplets the
forces are in general not charge independent. To require these forces
to be charge independent requires an additional greater symmetry
beyond that of isospin.*

Let us now consider the interaction between X-hyperons and
pions and the restrictions imposed by isospin invariance. There are
three charge states of each, and thus in all nine possible charge
states for the X-r system. Since these are two different particles,
there are no restrictions imposed by the Pauli principle. Both the
2 and the = have isospin 1, thus the nine states of the X-n system are
distributed among three isospin multiplets: a quintet having T'=2,
atriplet having T=1, and a singlet having T=0. If the Hamiltonian
is invariant under isospin transformations, the interaction must be
the same for all 2~rn states within the same multiplet. Thus, the
interaction between X’s and 7’s in the nine possible charge states
are expressed as functions of three parameters; the quintet inter-
action, the triplet interaction, and the singlet interaction. However,
isospin invariance does not require any relation between these three
interactions. Thus, the X-r interaction is not charge independent
in the sense that it is independent of the charges of the X and the =.
However, there are relations between the interactions in that there
are only three independent interactions instead of nine. The basis
of these relations is easily understood in terms of the requirement
that the interaction between nucleons be completely charge in-
dependent and that the interactions between other particles be

* One can see that complete charge independence for pion—pion forces would
require that the singlet and quintet interactions be equal.
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restricted in the manner required to maintain the nucleon charge
independence.

One might imagine a situation where the X’s and the n’s were the
first particles to be discovered and nucleons for some reason did
not exist or were unstable. This rather artificial situation is considered
here because the analogous situation does exist in the octet or eight-
fold model of elementary particles with unitary symmetry. One
would then find experimentally that there were relations between
the interactions in the different Y-n charge states which were
described simply in terms of the algebra of the group SU,. One
might say that these interactions behaved asif there existed a doublet
of basic particles for which the interactions were really charge inde-
pendent. On the other hand, one could also give a simple description
of the Z-=m interaction in terms of the isospin operators without
requiring that the nucleon or some other isospin doublet exist.

2.4. THE USE OF THE GROUP THEORETICAL METHOD

The simple example of isospin illustrates the use and the power of
the group theoretical method. In this case it was not even necessary
to investigate the algebra of the operators or the structure of the
multiplets. All that was necessary was to show that the operators
satisfied the same commutation rules as angular momentum oper-
ators. From this point it was possible to use all of the results al-
ready known from angular momenta, even though the physical
situation described by isospin was very different from rotations in
ordinary three-dimensional space. One finds repeatedly in physics
that abstract algebraic relations obtained in one kind of physical
problem can be useful in another problem where the same algebra
arises.

We note again that the physical basis of isospin is the charge
independence of nuclear forces and the coupling of all strongly in-
teracting particles in accordance with this charge independence.
The isospin formalism does not add any new physics to this basis.
It merely offers a simple and compact method for calculating the
consequences of this basic physical principle for experimental
measurements on strongly interacting particles.
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In this example we have seen how Lie algebra can be generated
from bilinear products of creation and annihilation operators and
how this algebra is useful in two cases: (1) The strong interactions,
where the Hamiltonian commutes with all of the isospin operators;
(2) The electromagnetic interaction which has simple commutation
relations with the isospin operators and which is sufficiently small
to be treated as a perturbation. We did not need to investigate the
structure of the algebra and the multiplets in detail because these
were immediately evident by the connection with angular momen-
tum. In the following chapter we consider a more complicated
example where the algebra and multiplet structure must be in-
vestigated, but the general treatment is a simple extension of isospin.



CHAPTER 3

THE GROUP SU; AND ITS APPLICATION TO
ELEMENTARY PARTICLES

3.1. THE LIE ALGEBRA

We have seen that the isospin Lie algebra is generated from bilinear
products of creation and annihilation operators in the case where
there are only two quantum states. Consider now the case where
there are three quantum states. A convenient example of this case is
the Sakata model of elementary particles in which the transforma-
tions of isospin are extended to include the lambda hyperon as well
as the proton and the neutron. Let a, and a, be operators for the
creation and annihilation of a lambda particle. We now construct
the Lie algebra of all possible bilinear products of the nucleon and
lambda operators which do not change the number of particles.
With three creation operators and three annihilation operators,
there are nine possible bilinear products. These are conveniently
written as follows:

B=a;ap+a,7,an+afia,i ,

r+=a;‘,an, ‘r_=a:',ap,
to = Hala, —ala,), o
B+=a;a,1, B_=ala,,
C, =adla,, C_=a1ap,

N =%(alap+af,an —2a%a,)=1B+S.

As in the case of isospin, we are not writing sums over space and

33
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spin variables, but are using the simpler notation of eq. (2.1).

As in the case of isospin, some of the bilinear products are oper-
ators which change one kind of particle into another, while others
are number operators which simply count the number of particles
of a particular kind. Again the sum of all the number operators is
just the baryon number and commutes with all of the other oper-
ators which do not change the baryon number. We therefore divide
the set of nine operators into a set of eight plus the baryon number
which commutes with all of the rest. In the set of eight operators,
there are still two number operators and it is convenient to choose
the linear combinations given in eq. (3.1); namely, the isospin oper-
ator 1, and the operator N which is just one-third the difference
between the number of nucleons and twice the number of lambdas.
Since the nucleons have strangeness 0 and the lambda strangeness
—1,the operator N is just equal to the sum of one-third of the baryon
number and the strangeness as indicated in eq. (3.1). The remaining
six operators in the set are the two isospin operators 7, and 7_
and the four operators B,, B_, C, and C_ which change lambdas
into nucleons and vice versa.

Let us now consider which Lie group is associated with these
operators. By an extension of isospin we see that these operators
generate infinitesimal transformations in a three-dimensional pro-
ton-neutron-lambda Hilbert space. These transformations are again
unitary; thus the Lie group associated with these operators is the
group of unitary transformations in a three-dimensional space.
Again the full unitary group in three dimensions is generated by
the set of nine operators including the baryon number. The set
of eight operators excluding the baryon number generates the
unimodular unitary group in three dimensions which is designated
by the notation SU;,. These are again unitary transformations which
are represented by the matrices having a determinant of +1.

Inspection of the set of operators (3.1) shows that the eight
operators form a Lie algebra of rank 2. The two operators 7, and N
commute with one another, and it is impossible to find a third
operator which commutes with both of these. A few simple obser-
vations show that the remaining six operators are already in the
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desired form of step operators, E,, defined in eqgs. (1.18), (1.19) and
(1.20), shifting the eigenvalues of t, and N. The eigenvalue of
T, is unaffected by the creation or annihilation of a lambda, which
has isospin zero. A change in the eigenvalue of N is the same as a
change in strangeness, since none of the operators change the
baryon number. Strangeness is unaffected by the creation or anni-

N

14

Fig. 3.1

hilation of a nucleon, which has strangeness zero. The operators
with the subscript +, B, and C,, create a proton and annihilate a
neutron, respectively, thereby increasing the eigenvalue of 7, of
any state by +3. Similarly, the operators with the subscript —
change the eigenvalue of 7, by —34. The B-operators annihilate a
lambda and therefore increase the strangeness and the eigenvalue
of N by +1; the C-operators create a lambda and therefore change
the strangeness and the eigenvalue of N by —1. The following
commutation relations can thus be written down without any
calculation.

[to, 74] = £74, [N,z:] =0,
[to, B:]= £3B., [N,B.]=B., (3.2a)
[to, Csl=%3Cs, [N, Ci]l=-C:.
These commutation rules can be represented on a diagram analo-
gous to Fig. 1.1a for angular momentum. However, since this alge-

bra is of rank 2 the diagram is a two-dimensional plot of the eigen-
values of 7, and N as shown in Fig. 3.1.
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The remaining commutators are easily obtained by simple algebra.

[t+, Bi] =[t4, C:]1=0=[C,, C_]=[B,, B_],

[t+, B] =By ) [B:, Cil =714,

[ts, C5]l =—C5, [t4,7-1 =21, (3.2b)
B+, C_]1=1(BN+21),

[B-, Ci]1=3(BN—-21).

Following the analogy with isospin we might attempt to find
operators C, which are functions of these operators and commute
with all of them. The eigenvalues of these operators would then be
used to label the multiplets as the eigenvalues of the operator T>
label the isospin multiplets. However, the operators C, for the SU,
group are rather complicated and we defer considering them to a
later point. We shall see that a considerable amount can be learned
about the structure of the multiplets without knowing the explicit
form of the operators C,.

3.2. THE STRUCTURE OF THE MULTIPLETS

The SU; multiplets are generated by successive operation on any
state within the multiplet with the eight operators of the Lie algebra
represented in Fig. 3.1. The states of each multipletarerepresented as
points onatwo-dimensional plot of theeigenvalues of 7, and N analo-
gous to the one-dimensional plot of isospin multiplets in Fig. 2.1.
The points representing the states of a given multiplet should appear
in such a plot as a two-dimensional lattice in which the lattice vec-
tors are just the vectors of Fig. 3.1 representing the operation of the
operators B, C; and 7. The lattice therefore has the hexagonal
character of Fig. 3.1 in which a change of N by +1 is always ac-
companied by a change in T, of + 1. Since the SU, algebra is larger
than the isospin algebra and includes it as a subset, we expect the
multiplets for SU; to be larger than isospin multiplets and to con-
tain several isospin multiplets at different values of N. Since the
B- and C-operators change T, by +1%, both integral and half-
integral isospins occur in the same multiplet in contrast to the case
of isospin multiplets. From the hexagonal character of the lattice
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we see that integral and half-integral isospin multiplets appear
alternately with increasing values of the quantum number N.

Let us now consider some simple examples of SU; multiplets.
The neutron—proton-lambda triplet itself forms a multiplet since
the eight operators simply transform these particles into one another.
This triplet is represented in the diagram, Fig. 3.2a. Similarly, the
corresponding antiparticle triplet forms a multiplet and is illustrated
in Fig. 3.2b. For convenience, we use the term sakaton to denote
neutron, proton or lambda analogous to the term nucleon for
neutron and proton. Let us now examine the states of the system
formed by one sakaton and one antisakaton. The nine states formed
by combining these two triplets can be analyzed to determine their
behavior under the transformations generated by the operators
(3.1). However, since these sakaton—-antisakaton states are gener-
ated from the vacuum by the operation of a product of a sakaton
creation and a sakaton annihilation operator, e.g. af,a,,lO) we see
that these nine states look very much like the nine operators (3.1).
If we write down these states explicitly we find that they split into
two multiplets, a singlet and an octet analogous to the operators
(3.1). These multiplets are shown in Figs. 3.3a and 3.3b. The
singlet has N=0 and T,=0 and thus has the same SU,; quantum
numbers as the vacuum. The octet looks very much like the dia-
gram, Fig. 3.1, of the generators of the group.

Note that there are two points in the octet of Fig. 3.3b at N=0,
Ty, =0. This degeneracy is a characteristic of the SU; multiplet
which is not found in isospin and angular momentum multiplets.
In the latter the eigenvalue of J, or T, is sufficient to specify a state
completely within a multiplet. In the SU, multiplets the eigenvalues
of the two operators N and 7, are not always sufficient for complete
specification of a state within a multiplet; there may be several
states having the same values of these quantum numbers. An addi-
tional quantum number is therefore necessary to distinguish between
these states. The choice of this additional quantum number is not
determined by thealgebra of the group SU;. In general, such addition-
al quantum numbers are chosen for convenience in the particular
physical problem under consideration, and the choice is not unique.



38 THE GROUP SU, §3.2
N N
(1,0) 4R ©,1)
ne "Jj op %
: To T,
-% _01 % 'i’ 1 ° % °
-3 ﬁ =37 H
‘% A
(@) (b)
Fig. 3.2
N N
(0,0) e 11 o UM
} *— T,
5 To = 'i o i : o
L) -1+ 3
(a) (b)
Fig. 3.3
7
ﬁ) A
Q@ - A -, @ / \
Ny ‘\p/ ® . ©
< \% 71*
A 4 / \
™~ ) “
7~ > ~
[ ;1 {\(/
=g
(a) (b)

Fig. 3.4



§3.2 THE GROUP SUj, 39

One way to find such additional quantum numbers is to examine
other groups which are subgroups of the one being considered.
The Casimir operators C, of the subgroups may define a convenient
additional quantum number. This turns out to be the case in our
present analysis of SU5. The obvious subgroup is the SU, group
which for physical reasons we should like to keep as a good quantum
number. It turns out that the total isospin operator T2 gives us an
additional quantum number which is all that is required for com-
plete specification of the states in a multiplet. In the particular
multiplet under consideration, Fig. 3.3b, we see that the four states
having N=0 split into an isospin triplet and an isospin singlet.
Thus the two states having N=0 and 7,=0 are distinguished by the
eigenvalue of T, which is T=1 for the triplet state and T=0 for the
singlet state.

From examination of Figs. 3.2 and 3.3 we see that these multiplets
are indeed hexagonal, two-dimensional lattices. To give a complete
specification of a multiplet we need to know its shape and size and
the number of states appearing at each lattice point. A few simple
considerations discussed below show that the shape of the multiplet
must always be a hexagon or truncated triangle specified by two
parameters as shown in Fig. 3.4. For reasons which will become
apparent below these two parameters are called A and p and rep-
resent the size of the isospin multiplets occurring at the maximum
and minimum values of N in the particular SU; multiplet.

A=2T at N=Np.,
u=2T at N=Np,.

The multiplets are then labeled (4, x). In this notation the two trip-
lets of Fig. 3.1 are denoted by the values (1,0) and (0, 1) respect-
ively; the singlet of Fig. 3.3a is denoted by (0,0) and the octet of
Fig. 3.3b is denoted by (1,1).

The requirement that the multiplets must have the form of Fig.
3.4 can be deduced from certain simple symmetries and arguments
similar to those used in obtaining properties of crystal lattices. We
first note that all multiplet diagrams must be symmetric about a
vertical axis through the center since a reflection across this axis
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simply interchanges the neutron and proton in the sakaton multiplet
and in general takes any state into the corresponding one of the same
isospin multiplet having the equal and opposite eigenvalue of z,,.
(This is just the ‘charge symmetry’ transformation which is used in
defining G-parity.) Since the neutron, proton and lambda are all
considered on an equal basis in the Sakata model, the transforma-
tions which interchange the proton and lambda leaving the neutron
unchanged, or which interchange the neutron and lambda and leave
the proton unchanged, should be similar in nature to the proton—
neutron transformation discussed above. Thus we see that the
diagrams must also be symmetric with respect to reflections about
the axes denoted by the numbers 2 and 3 in Fig. 3.4 which are at
angles of 120° with respect to the vertical. Cyclic permutations of
the n—p-A triplet corresponding to rotations of 120° of the multiplet
diagram are obtained from successive reflections across two of the
axes mentioned above. The multiplet must therefore also have a
shape which is invariant under rotations of + 120°. These symmetry
properties are almost sufficient to fix the shape of the multiplet as
that given in Fig. 3.4. (The only other possibilities not yet excluded
involve re-entrant corners in the polygon.)

We also note that the operation of charge conjugation changes
the signs of the quantum numbers N and T,. The charge conjugates
of the particles in a given multiplet such as that shown in Fig. 3.4a
then form a multiplet having a shape obtained by inversion through
the origin as shown in Fig. 3.4b. The charge conjugate multiplet
thus has the values of / and p interchanged (e.g., see sakaton and
antisakaton multiplets of Fig. 3.2).

Detailed analyses of the properties of the multiplets should in-
clude: (1) a rigorous demonstration that the multiplets do indeed
have the shape shown in Fig. 3.4; (2) a prescription for the number
of states occurring at each lattice point in the multiplet for the cases
where several isospin multiplets occur with the same N-value, and
(3) explicit expressions for the matrix elements of the operators
(3.1) between different states of the same multiplet. This analysis
can be carried forward in a variety of ways.

One method would be to follow a procedure analogous to that
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used in angular momentum; namely, to obtain relations between
matrix elements by use of the commutation rules and by noting
that certain operators must have vanishing matrix elements when
operating on states at the edge of the multiplet. This method is
perfectly straightforward, but the algebra is more complicated
and tedious than for the case of angular momentum.

Anotherline of approach is analogous to the Schwinger treatment
of angular momentum by building everything up from doublets of
spin 4. One can build up all possible SU; multiplets by combining
sakaton triplets. This is consistent with the philosophy of the Sakata
model which considers that all elementary particles are composites
built from the elementary sakaton and antisakaton triplets. This
procedure is also relatively simple and is, of course, valid inde-
pendently of the validity of the Sakata model. This approach is car-
ried out in detail in Appendix A.

Another approach is to use the different SU, subgroups of SUj;,
noting that within each subgroup the transformations and matrix
clements of operators are just those of ordinary angular momentum
algebra. We note, for example, that the operators 7, and t_ which
move us back and forth horizontally across any multiplet diagram
move from one state to another in a given isospin multiplet and the
matrix elements are just the usual Clebsch-Gordan coefficients of
eq. (2.5). However, instead of defining isospin as transformations
of neutrons and protons into one another, leaving the lambda
invariant, we could equally well define a different kind of operation
which interchanges neutrons and lambdas leaving the proton in-
variant. Such transformations would move us across the diagram
in the direction perpendicular to that of axis 2 in Fig. 3.4. Since
these transformations are also two-dimensional unitary transforma-
tions, they are described by an angular momentum algebra in
which the operators C, and B_ play the roles of 7, and 7_. The
matrix elements of these operators are again given by ordinary
Clebsch-Gordan coefficients of the three-dimensional rotation
group. The matrix elements of tie operators B, and C_ are ob-
tained from a third SU, group in which protons and lambdas are
transformed into one another, the neutron is left invariant, and we
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move along lines perpendicular to axis 3 in Fig. 3.4. In dealing with
these different SU, multiplets we must be careful whenever there is
more than one state at a given lattice point as at the origin in Fig.
3.3b. The particular states chosen to be eigenfunctions of 7' are
not the proper states to fit into multiplets which cross the diagrams
at angles of 120°. Different linear combinations of these states
which are not eigenfunctions of 72 are necessary to fit into the other
SU, multiplets. The proper linear combinations, however, are
easily determined after some simple algebra. This approach is
carried out in detail in Appendix B.

(2,5)

Fig. 3.5. The (2,5) multiplet

We note that the two parameters 1 and u characterize a particular
multiplet in the same way as the quantum numbers J and 7 for
angular momentum and isospin. One might ask whether these
parameters are connected with the eigenvalues of the Casimir
operators C, of the SU; algebra. This turns out to be the case.
However, it is much more convenient to use the numbers A and u
which have simple integral values to specify the multiplets rather
than the eigenvalues of the Casimir operators which turn out to be
complicated polynomials in A and u. This is analogous to angular
momentum where one uses the number J to characterize the multi-
plet rather than the eigenvalue of the operator J? which is the
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polynomial J(J +1). Further discussion of the Casimir operator is
given in Appendix B and in Chapter 4.

Using any of the methods outlined above one finds that there are
SU, multiplets labeled by the numbers (4, 1) for all possible integral
values of /1 and u. One also finds the following rule for deciding how
many states there are at each lattice point:

(a) The outer ring of lattice points is always single with only one
state at each lattice point.

(b) Going inward each consecutive ring of lattice points has one
more point at each lattice point than the outer ring. This continues
until one arrives at a ring which is either a point or a triangle.

(c) Once in going inward one arrives at a ring which is a triangle,
the number of states at each lattice point within the triangle is the
same as on the perimeter of the triangle.

These rules are illustrated in Fig. 3.5, which shows the (2,5)
multiplet. In this multiplet the outer ring is single, the next ring is
double, the third ring is triple and this ring is a triangle. Thus, the
states within the triangle are all triplets as well.

Some of the multiplets which are of particular interest in ele-
mentary particle classification are shown in Fig. 3.6. These are the
(3,0), the (0,3) and the (2,2) multiplets. The (3,0) and (0, 3) multi-
plets each have ten states and are sometimes called decuplets.

The operator N, the sum of % the baryon number and the
strangeness, has eigenvalues having the form n, n +4 and n— 4 where
nis an integer. However, since all of the operators in the set change
N by 0 or +1 and not by any fractional number, the eigenvalues of
N within a given multiplet must all have either the form n, n+% or
n—1%. Thus there are three different types of multiplets having eigen-
values of N which are either integral, integral +%, or integral —3.
This characterization of types of multiplets is analogous to the
angular momentum multiplets with either integral or half-integral
eigenvalues. It can be shown* that the classification of the SU;
multiplets into these three types is simply expressed in terms of the
numbers A and pu. The quantity $(1—pu) determines the type of

* See Appendix B, eq. (B.18).
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multiplet. The eigenvalues of N are integral, integral +1 or integral
—1 when the value of $(1— p) is integral, integral +4 or integral — 1,
respectively. This property is illustrated in the simple multiplets of
Fig. 3.2, 3.3 and 3.6.
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3.3. COMBINING SUs MULTIPLETS

In a system consisting of several parts the value of N for the total
system is equal to the sum of the values of N for the various parts,
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since both baryon number and strangeness are additive. One there-
fore arrives at rules for combining multiplets analogous to the rules
for combining integral and half-integral angular momenta.

m+@ - (@) (3.32)
(mEH+0m) @t (3.3b)
n+3) +@—3)->@) (3.39)

More detailed rules for coupling specific multiplets can be obtained
by methods analogous to those used for coupling angular momenta.
Unfortunately, these are not quite so simple as the angular mo-
mentum rules and one cannot remember them as easily as one re-
members that coupling T=>5 to T=4 gives all integral values of T
from 1 to 9.

One coupling which is of particular interest in elementary particles
is the coupling of two octets. For this case, it can be shown* that the
64 states formed from the elements of two octets break up into 6
multiplets.

(L,D+(1,1)> (0,00 +(1,1)+(2,2) + (3,00 +(0,3)+(1,1) . (3.9
S A

One finds a singlet, two octets, two decuplets and one 27-uplet.
Adding up the total number of states in these multiplets one finds
indeed 1 +8+427+410+10+48=064. The two octets might represent
two multiplets of the same type, in the same way that two isospin
triplets coupled together might represent a two-pion system. For
such a case, it is of interest to specify the multiplets of the combined
system with regard to their permutation symmetry. For example,
in coupling two T=1 isospin multiplets the T=0 and 7=2 multi-
plets for the combined system are symmetric with regard to per-
mutation of the two T=1 components whereas the 7=1 state

* Sce Appendix A, eq. (A.2).
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of the combined system is antisymmetric.

(T=1) +(T=1) = (T=0)+(T=2) + (T=1). (3.5)
S A

In the same way one finds that the first three multiplets in eq. (3.4)
are the symmetric combinations and the last three are antisym-
metric. This is indicated by the letters S and A in eq. (3.4).

One can define a generalized Pauli principle for identical SU,
multiplets in the same way as for isospin. The wave function for a
two-particle system can be written as a product of a space-spin
factor and a factor depending on the internal quantum numbers
isospin and hypercharge. One then requires the overall wave func-
tion to be symmetric for bosons and antisymmetric for fermions,
including both the space-spin and internal factors. Thus the states
of two bosons both belonging to the same octet must belong to the
multiplets labeled S in eq. (3.4) if the space-spin is symmetric and
to the multiplets labeled A if the space-spin part is antisymmetric.
For fermions the S-multiplets go with antisymmetric space-spin
and the A-multiplets with symmetric space-spin.

Note that two (1,1) octets appear in the coupling of two octets.
The analogous situation does not occur in coupling two isospin
multiplets, where one never gets more than one isospin multiplet
for the combined system having a given value of 7. In isospin
couplings several multiplets having the same T appear only when
one couples at least three isospin multiplets.

An example of such a case is the coupling of two nucleons and a
K-meson. Each of these particles is in a =4 isospin doublet. Thus
there are eight possible states for the two-nucleon-K-system and
these can be broken up into three multiplets, one 7’=3 quartet and
two T=% doublets. One can describe the two doublets by saying
that in the first doublet the two nucleons are coupled to 7=0 and
the resulting two-nucleon singlet is then coupled to the K-meson
to give T=14. In the second doublet the two nucleons are coupled

to T=1 and the resulting two-nucleon triplet is then coupled to the
K-meson to give T=1.
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{(N+N)r-o+K}r—y,
{(N+N)p_; +K}poy

However, this is not the only way to specify the individual T=4
doublets. Any linear combination of the states of the two doublets
isalso anisospin doublet and any two orthogonal sets of linear com-
binations can be used to specify the two doublets. One might, for
example, couple one of the nucleons to the K-meson first rather
than coupling the two nucleons and in this way specify the two
doublets by saying that in one of them a nucleon and the K are
coupled to T=0 and in the other to T=1.

{(N+K)r=0+N}r_y,

{(N+K)p-;y +N}r_y .
The two doublets obtained in this way (3.6b) would be linear com-
binations of the two doublets (3.6a) obtained by coupling the two
nucleons first and these two sets of doublets would be related by
unitary transformation.

A similar ambiguity exists in the specifications of the two octets
arising in eq. (3.4) when coupling together two SU; octets. It is
possible to distinguish between the two octets in the manner sug-
gested by eq. (3.4), namely, by the permutation symmetry. One of
the (1,1) octets is symmetric with respect to interchange of the two
components on the left-hand side of (3.4) and the other is antisym-
metric. On the other hand, any linear combination of the symmetric
and antisymmetric octets is also an octet although it does not have
a definite permutation symmetry. Permutation symmetry may not
be important in some physical problems (particularly if the two
octets being coupled together represent different kinds of distin-
guishable particles). In these cases any two orthogonal linear com-
binations of the two octets on the right-hand side of (3.4) may be
chosen to specify the states.

(3.6a)

(3.6b)

3.4. RSYMMETRY AND CHARGE CONJUGATION

The R-transformation or hypercharge reflection is defined on any
state as the reversal of the sign of the hypercharge Y and of the
isospin T, of the state accompanied by multiplication by a phase
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factor determined by convention. This corresponds to an inversion
about the origin of the multiplet diagram. For multiplets like the
(1,1) octet which are symmetric about the origin the R-transforma-
tion carries one state into another state within the same multiplet.
For multiplets which are not symmetric about the origin, like the
(3,0) decuplet the R-transformation carries each state into the
corresponding state of the conjugate multiplet; e.g. it carries a
member of the (3,0) decuplet into a member of the (0, 3) decuplet.
The R-transformation is not included in the unitary transformations
of the group SU . It is thus possible for an interaction to be invari-
ant under SU; and not invariant under R and vice versa. Experi-
mental evidence seems to indicate that strong interactions are not
invariant under the R-transformation.

For bosons where particles and their charge conjugates appear
in the same SU; multiplet, the R-transformation is equivalent to
charge conjugation. The R-transformation is therefore useful in
considering properties of boson multiplets. Since boson multiplets
include states which are eigenstates of charge conjugation and
therefore of the R-transformation, a phase convention is necessary
to determine the phase of the eigenvalue of R. The phase is chosen
to be the same as that under charge conjugation; i.e. particles like
the n° which are even under C are even under R.

The R-transformation is useful in classifying multiplets occurring
in the combination of two (1,1) octets and in distinguishing between
the two equivalent octets arising in this combination. If the two
octets being combined are both even under R (e.g. two pseudoscalar
meson octets) some states of the combined system will be €ven under
R and others will be odd. The classification of the multiplets under
R is related to the classification by permutation symmetry but
slightly different. The three multiplets arising from states which are
symmetric under permutation of the two octets are even under R,
while the antisymmetric octet is odd under R. This is evident from
examination of the states in the center of the multiplet diagram
with zero charge and hypercharge. These states are produced by
taking linear combinations of states of the two initial octets in-
volving a particle and its antiparticle. Permutation cof the members
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of the two octets is thus equivalent to charge conjugation or to the
R-transformation. This argument is not valid for the (3,0) and (0, 3)
decuplets. Although these contain only states which are antisym-
metric under permutations they do not contain any states involving
a particle and its corresponding antiparticle. Charge conjugation or
the R-transformation on any state in the (3,0) decuplet lead to the
corresponding state in the (0,3) decuplet. The states in the two
decuplets are therefore not eigenstates of the R-transformation.

In considering reactions, decays or couplings to two-boson states,
the requirement of invariance under charge conjugation reduces the
number of channels. In particular, charge conjugation invariance
removes the ambiguity of two octets arising in the coupling of two
octets. If the two octets being coupled are equivalent bosons, one
of the octets arising in the combined system is even under C, while
the other is odd.

3.5. THE GENERALIZATION TO ANY SUs; ALGEBRA

We have used the Sakata model for elementary particles to develop
the SU, Lie algebra and determine the structure of the multiplets.
However, the algebra of SU; does not depend on the Sakata model;
the latter is merely a convenient way to introduce the algebra. This
is analogous to building up angular momentum or SU, algebra by
using the basic spin one-half objects, e.g. nucleons.

If a set of eight operators satisfying commutation rules like those
of the operators (3.2) should arise in any physical problem we now
know that these operators constitute the Lie algebra of the group
SUj;. These operators can be used to characterize states of the associ-
ated quantum mechanical system and group them into multiplets.
These multiplets will have the same structure that we have found
using the Sakata model for elementary particles, since multiplet
structure depends only on the Lie algebra and not on the particular
model used. The only possible difference between multiplet struc-
ture determined by a particular model and as determined from the
Lie algebra is the possibility that some multiplcts which are possible
in the Lie algebra may be absent from the particular model. For
example, if orbital angular momentum had been used to build up
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the structure of angular momentum multiplets the possibility of
half-integral eigenvalues for J would have been missed. We have
no proofthat the Sakata model gives all the possible SU; multiplets.
This happens to be the case but it will not be proved explicitly in
this book.

The Sakata model for elementary particles does not seem to be in
agreement with experiment at this time.

3.6. THE OCTET MODEL OF ELEMENTARY PARTICLES

Let us now examine the classification of states of elementary
particles from a somewhat different point of view. The experimen-
tally found elementary particles and resonances can be grouped into
sets of states all having the same spin and parity but differing by
‘internal’ quantum numbers such as charge and strangeness. One
might hope to classify these sets of particles into multiplets corre-
sponding to some Lie algebra. The operators of this Lie algebra
would then change only the internal quantum numbers of the state
and would not affect spin, parity, or any of the spacial variables.
Particles having the same spin, parity and strangeness but different
electric charge are grouped into isospin multiplets. We are therefore
looking for a higher symmetry, in which the multiplets would in-
clude several isospin multipletshaving different values of strangeness.
The electric charge and the strangeness are two additive conserved
quantities which can be used to specify the internal quantum num-
bers of a particle, and there is no other quantity of this kind in evi-
dence. This suggests that the Lie algebra desired is one of rank two.
The baryon number is also a conserved additive quantum number
but is not relevant to this discussion since there does not yet seem
to be any physical interest in placing particles having different values
of the baryon number in the same multiplet.

Let us now examine the experimentally observed sets of particles
to see whether they can be grouped into multiplets in a natural way.
We first examine two-dimensional plots of all known particles of a
given spin and parity. The coordinate axes might be electric charge
and strangeness since these are the two quantities conserved. How-
ever, since we know that we wish to include isospin in the higher
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symmetry a plot of T, and the hypercharge Y are more suitable
variables. This can be seen from Fig. 3.7, which shows plots for all
the known stable baryons of spin %, all the known pseudoscalar
mesons and all the known vector meson resonances. These dia-
grams immediately suggest the octet multiplets for the group SU;
with an additional singlet vector meson. The meson octets are just
like those predicted by the Sakata model. However, it appears
natural from the plot of Fig. 3.7 to place the baryons also in an octet
rather than having some of them in a triplet as in the Sakata model.
This classification of elementary particles is called the octet model
of unitary symmetry or the eightfold way.
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Let us now try to find a mathematical formulation for the octet
model. We have already constructed the algebra of the group SU,
using the Sakata model and found the structure of the corresponding
multiplets. These results can be used for any set of eight operators
satisfying the commutation rules (3.2) even though they have no
connection with the Sakata model (this is analogous to the applica-
tion of all angular momentum results to isospin, even though isospin
has no connection with a physical three-dimensional rotation).

We define for the octet model eight operators satisfying the
commutation rules (3.2). The three isospin operators 7, t_ and 7,
are defined in the conventional way. From Fig. 3.7, particularly
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from the baryon octet, we see that the diagonal operator N should
correspond to the hypercharge Y= B+ Srather thanto {B+Sasin
the Sakata model. Once the four operators 7., 7_, 7o and N are
defined, the remaining four operators are completely defined by the
commutation relations (3.2). The relations (3.2a) establish them as
step operators changing the eigenvalue of 1, by 4% and the eigen-
value of N by = 1. The relations (3.2b) give the commutators of the
step operators among themselves. Using these commutation rules
and the results of multiplet structure obtained from the Sakata
model the matrix elements of any one of these eight operators can
be calculated between any two states of a given multiplet. We there-
fore have a complete specification of these operators.

Since the hypercharge Y has only integral values only states with
integral eigenvalues of N can occur in the octet model. No multi-
plets with third-integral eigenvalues of N can occur. Thus only
those multiplets (4,u) occur for which $(1—p) is an integer. The
simplest multiplets occurring in the octet model are thus the (0,0)
singlet, the (1,1) octet, the (3,0) and (0,3) decuplets and the 27-
dimensional (2,2).

There is no simple description of the physical basis of the octet
model in terms of interactions between particles, analogous to the
charge independence of nuclear forces for isospin symmetry and
the equivalence of neutron-proton and lambda interactions for
the Sakata model. In the Sakata model the members of multiplets
more complicated than the sakaton triplets (e.g. the meson octets)
are not all equivalent and have different interactions. The unitary
symmetry requires merely that these interactions be related in such
a way as to preserve the equivalence of the interactions between the
three basic sakatons. This is analogous to the requirement by isospin
symmetry that the forces between 2’s and n’s have relations between
them which preserve the charge independence of nuclear forces.
In the octet model the eight basic baryons are not equivalent, and
the interactions between different pairs of baryons are related but
not identical. This is analogous to the hypothetical case discussed in
isospin where one considered the interactions between 2’s and =’s
resulting from isospin symmetry in the case where nucleons did not
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exist. The interactions between the mesons and baryons in the two
(1,1) octets are related as if there existed some fictitious triplet like
the sakaton for which the forces were really independent. However,
the existence of a basic sakaton-type triplet is not necessary for the
application of SU; symmetry, just like the existence of particles of
half-integral spin is not necessary in order to allow one to use an-
gular momentum. A basic triplet for the octet model would need to
have very peculiar properties since it would have third-integral
hypercharge. Hypothetical triplets have been used in mathematical
presentations of the octet model requiring both a boson triplet and
fermion triplet, and there has also been a suggestion that a triplet
with third-integral electric charge might exist.

There is no simple definition for SU; operators in the octet model
analogous to the definition (3.1) for the Sakata model. One can
define operators for the octet model in terms of creation and annihi-
lation operators but these definitions are rather cumbersome. The
procedure is directly analogous to the extension of the definition of
isospin operators (2.1) to include pions and hyperons as well as
nucleons. One would have to add terms involving creation and
annihilation operators for all these particles. Each term would have
a numerical coefficient differing from unity for particles like pions
which are not members of an isospin doublet and determined by
the relations (2.5). However, as soon as the simplicity of the rela-
tions (2.1) and (3.1) is lost one may just as well use relations of
the form (3.5) giving matrix elements of the operators within any
multiplet to define the operators rather than an explicit definition
in terms of creation and annihilation operators.

Let us now examine the kind of experimental predictions which
can be made on the basis of the octet model of SU;. By analogy
with isospin we can make the following observations.

A. Predictions from the multiplet structure

1. Classification. All new resonances or strongly interacting
particles which are found must belong to SU; multiplets. Once one
member of a given multiplet is found, all the other members of the
multiplet must also exist.
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2. Couplings. If one considers resonances between two perticles,
the multiplet structures which can arise are determined by the SU,
coupling rules. Thus, all resonances of nucleons and hyperons with
7- and K-mesons must belong to the multiplets obtained by com-
bining two (1, 1) octets; namely, the (0,0) singlet, the (1,1) octet, the
(2,2) with 27 states, the (3,0) decuplet and the (0, 3) decuplet.

B. Predictions of relations between matrix elements
1. Decays. The decay rates or widths of different resonances
belonging to the same multiplet are related by SU; coupling rules
involving coefficients analogous to Clebsch-Gordan coefficients.
2. Reactions. Cross sections for different reactions involving
members of the same multiplet are related by SU; coupling rules.
3. Selection rules. One may find selection rules which result
from SUj; couplings.

C. Symmetry-breaking effects
Relations may be found for processes involving interactions like
the electromagnetic interaction which are not invariant under SU,
but have simple transformation properties.

A detailed analysis of the possible experimental predictions
from the octet model is given in Appendix C.

3.7. THE MOST GENERAL SU; CLASSIFICATION

Let us now attempt to apply the group SUj to the classification of
elementary particles in the most general manner possible, without
specifically assuming the Sakata or octet model. We begin with the
eight operators (3.1) defined now in terms of their commutation
rules rather than the specific representation in the Sakata model.
We also identify the t-operators with isospin and the operator N
with strangeness. However, we no longer require that N=4B+S or
N=B+S; rather we simply require that changes of N within a
multiplet be equivalent to changes of strangeness. The multiplets
still have the same structure as determined from the Sakata model
and the classification of the multiplets according to the eigenvalues
of N as being integral, integral +3}, and integral—% is still valid.
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These can be obtained from the algebra of the operators without
assuming the Sakata model. The relations (3.3) for combining
multiplets are also still valid.

Let us now consider what kind of multiplets can be used for the
nucleons and the pions. The pions are bosons and have no selection
rule against their being created singly without changing or creating
other particles. Nucleons, for example, can simply emit an arbitrary
number of pions and remain nucleons. From this property of the
pions and the relations (3.3) we see that the pions must be in a
multiplet having an integral value of N. The nucleons are fermions
and because of baryon number conservation can only be produced
in pairs with antibaryons. The nucleons can therefore be put either
into a multiplet having an integral value of N or a third-integral. If
the nucleons are put into multiplets having integral values of N
then the antinucleons must also be in multiplets having integral
values of N. If the nucleons are put into multiplets having values
of N equal to an integral +4, the antinucleons must be put into
multiplets in which the eigenvalues of N are integral —}. Because
of the symmetry between particles and antiparticles, there is no
physical difference between a scheme where the nucleons are in
n+4 multiplets and the antinucleons are in n —} multiplets and vice
versa. There are therefore two possibilities. Either the nucleons
and antinucleons are in third-integral multiplets and the mesons
are in integral multiplets, or both the nucleons and the pions are
in integral multiplets.

If the nucleons are put into the simplest third-integral multiplets,
we obtain the Sakata model which puts the nucleons into a (1,0)
multiplet and leads to the relation (3.1) that the quantum number
N is just £B+S. One might look for other possible multiplets with
third-integral N as a different choice for the nucleons. However,
there does not seem to be any other reasonable classification which
fits with the known particles.

If both the nucleons and mesons arc put into integral multiplets,
the smallest possible multiplet with integral N (excluding the singlet)
is the (1,1) octet. The only feasible arrangement for nucleons and
pions in these multiplets is to put both the nucleons and the pions
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each into an octet as shown in Fig. 3.7. This is just the octet model.
In this model only integral values of N occur and N is the hyper-
charge Y=B+S. At the time of the writing of this book, the octet
model looks hopeful for a description of elementary particles and
the Sakata model has been discarded because of its disagreement
with experiment.

Note that in both Sakata and octet models, the mesons are in
integral multiplets, while the baryons are in third-integral in the
Sakata and integral in the octet model. The classification of bosens
can thus be the same in both models, but the classification of bary-
ons cannot. Note that if bosons should be found which are classified
into third-integral multiplets, their decay into any combination of
nucleons, antinucleons and pions would be forbidden in both the
Sakata and octet models. The same would be true for baryons in
integral multipletsin the Sakata model or in third-integral multiplets
in the octet model. Such particles would be analogous to the strange
particles in the isospin classification whose decay into nucleons and
pions is forbidden by isospin.



CHAPTER 4

THE THREE-DIMENSIONAL HARMONIC OSCILLATOR

4.1. THE QUASISPIN CLASSIFICATION

The energy levels of a three-dimensional harmonic oscillator are
known to be highly degenerate. One way of seeing this is to
note that the harmonic oscillator Hamiltonian separates in Cart-
esian coordinates into three independent oscillators all having
the same frequency. The energy of the oscillator then depends
on the total number of oscillator quanta present and is inde-
pendent of the distribution of the quanta between the three oscil-
lators.

The three-dimensional harmonic oscillator is also soluble in
spherical coordinates and has the characteristic degeneracy of
rotational invariance. However, there is additional degeneracy
beyond that of rotational invariance. There are also degenerate
states corresponding to different eigenvalues of the total angular
momentum.

Let us consider the possibility of describing this degeneracy in
terms of operators which, when acting on one state of the oscillator,
give another degenerate state. Such operators have matrix elements
only between degenerate states and must commute with the Hamil-
tonian. Commutators of such operators would also commute with
the Hamiltonian and therefore a Lie algebra should be generated by
these operators. Since we know that angular momentum operators
must commute with the Hamiltonian because of its rotational in-
variance, we should expect to find a Lie algebra greater than that
of angular momentum and including the angular momentum Lie
algebra.

57
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The harmonic oscillator Hamiltonian is
H = (P1 +p5+p3) + (x1 +x5+x3), 4.1)

where m is the mass of the oscillator and w is the frequency. The
operators which do not change the energy of a state are clearly
those which reduce the number of oscillator quanta in one direction
and increase the number in another direction, thereby keeping the
total number of quanta constant. These are most conveniently ex-
pressed in terms of the oscillator creation and annihilation oper-
ators. We therefore define
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=\ + P> =1,23;
% ( 2h ) n (2mwh)* P #

4.2)
P (Mmoo L -
’ ( 2h ) T Gmany e #TEES
These operators satisfy the boson commutation relations
=
[au, av] - 5#\1 (4.3)

[a;‘,, all= [a,, a,]1=0.

When expressed in terms of these operators, the Hamiltonian (4.1)
assumes the simple form

Zi: (ala,+a au)-hco(z ala +3) (4.9)

The angular momentum operators are given by
ly=X,p,—Dp,x, = i(a,al—a,a}). (4.5)

Operators having the form af,av clearly commute with the Hamil-
tonian and connect only degenerate states of the oscillator, since
they transfer a quantum from the v-direction to the u-direction.
As there are three possible values for y and v, there are nine such
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operators. These look very similar to the operators of the group
SU,, eq. (3.1) in the Sakata model of elementary particles. Although
the proton, neutron and A-operators are fermion creation and
annihilation operators whereas the harmonic oscillator operators
are boson operators, the commutation relations of the bilinear
products are the same. Again we can find one operator of the set of
nine which commutes with all the rest. It is just the Hamiltonian
operator (4.4) directly analogous to the baryon number B in the
case of the Sakata model.

Operators analogous to those of the Sakata model can be written
very simply by replacing the sakaton creation and annihilation
operators by corresponding harmonic oscillator operators (4.2).
However, the treatment of the Sakata model made use of an SU,
subgroup, namely isospin, by picking a preferred direction in the
npA-space; namely the A-direction. The analogous procedure
would be to pick the x;-direction as a preferred direction for the
oscillator and choose the SU, subgroup to be that of the two-dimen-
sional harmonic oscillator in the space defined by the coordinates
x, and x,. For this purpose it is convenient to define boson operators
for cylindrical coordinates

a; =(a,Fia)y2,

ag=4as, (4 6)
a', = (al +ia))}y2,
al=al.

In terms of these operators we can write

H=ho{a a, +a' a_+ala,+3}, (4.7a)
ly=ala_, (4.7b)
i_=ata,, 4.7¢)
lo=3aha,—ata)=1l,. (4.7d)

The operators a, and a_ are now analogous to the proton and
neutron operators and the operators 1., A_ and A, are analogous
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to the isospin operators. However, the A-operators are not the an-
gular momentum operators for the harmonic oscillator. They are
really the operators for the group SU, of the two-dimensional
harmonic oscillator and not those of the three-dimensional rotation
group.

Note that the operator J is proportional to the 12-component of
the angular momentum but multiplied by a factor of 1. Although
only integral values of the orbital angular momentum / can occur
in the harmonic oscillator, the quantum number A, can have either
integral or half-integral eigenvalues, depending upon whether / is
even or odd. The three 1-operators can be called quasispin operators
since they satisfy angular momentum commutation rules. By
analogy with isospin one can define the total quasispin operator

P=3A A+ 23 +25. (4.8)

In addition to the quasispin operators, one can define the re-
maining operators of the algebra by direct analogy with the
corresponding operators of the Sakata model,

B, =a'a,, B_=a'a,,
C,=aba_, C_=ala,, 4.9
N=14a" a,+a' a_—2a}ay) = i(ala,+ala,—2a}a;) .

Now that we have defined operators satisfying exactly the same
commutation rules as those of the Sakata model, we can use all of
the results for the group SU, obtained from the Sakata model to
describe the multiplets of degenerate eigenstates of the harmonic
oscillator Hamiltonian. We can plot multiplet diagrams in which
the eigenvalue of N is plotted against the eigenvalue of A,. The
quantum number N is one-third the difference between the number
of quanta in the 12-plane and twice the number of quanta in the 3-
direction. N=0 when the numbers of quanta in all three directions
are equal, N >0 when the number of quanta in the 3-direction is less
than the average number in the 1- and 2-directions and N< 0 when
the number of quanta in the 3-direction is greater than the average
in the 1- and 2-directions. The quantum number N therefore
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measures a ‘deformation’ or departure from spherical symmetry.

The ground state of the harmonic oscillator is non-degenerate
and clearly is a (0,0) singlet of SU;. The first excited level of the
oscillator has a three-fold degeneracy corresponding to a single
oscillator quantum which can be in any of the three directions. This
is just the (1,0) triplet of SU; corresponding to the sakaton. The
expected third-integral eigenvalues of N occur. Since the oscillator
quantum corresponds to the sakaton, the nth excited level of the
oscillator containing n oscillator quanta corresponds to a state of n
sakatons. Furthermore, since the oscillator quanta are bosons, a
state of n oscillator quanta must be totally symmetric with respect
to permutation of the quanta. The nth excited level of the harmonic
oscillator must therefore correspond to the totally symmetric SU,
multiplet obtained from the n-sakaton system. This is shown in
Appendix A to be the (»,0) triangular multiplet.

The levels of the nth excited state can be classified into quasispin
multiplets having all possible values of the total quasispin 4 from 0
to 3n, including both integral and half-integral values. The total
number of states in this (n,0) multiplet is 3(n +1)(rn +2). This is just
the number of states that one obtains by examining all possible
ways of distributing » oscillator quanta among the three oscillator
directions. The states of the (#,0) multiplet thus completely exhaust
the degeneracy of the nth level of the harmonic oscillator. The
degeneracy of the three-dimensional harmonic oscillator is thus
completely described by the classification of its states using the
group SU,;.

4.2. THE ANGULAR MOMENTUM CLASSIFICATION

The quasispin classification of the levels of the three-dimensional
harmonic oscillator is not the conventional one and does not display
explicitly the symmetry of the oscillator under ordinary three-
dimensional rotations. One normally classifies the state of the
three-dimensional oscillator by expressing the wave functions either
in Cartesian coordinates or spherical coordinates. In the latter case
they are classified by taking eigenfunctions of the orbital angular
momentum /. We know that if n is even, all even values of / occur up
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to /=n, whereas if nis odd, all odd values of / occur up to /=n. The
states in the quasispin classification are naturally related to those
in the angular momentum classification. In both cases /5 is a good
quantum number. The quasispin multiplets corresponding to
integral values of A have only even values of /5 ; those corresponding
to half-integral eigenvalues of 1 have only odd values of /5. Let us
examine the quasispin multiplets in the (n,0) multiplet correspond-
ing to the nth excited oscillator level. The two largest quasispin
multiplets corresponding to /=4n and /=%(n—1) just contain all
the eigenvalues of /; appearing in the /=n angular momentum
multiplet. Continuing in this manner, we find the expected one-to-
one correspondence between the eigenvalues of /; arising in the
quasispin and the angular momentum classification. However, for
all values of /; where more than one state appears in the (»,0) multi-
plet, those states which are eigenfunctions of the quasispin A are
not eigenfunctions of the orbital angular momentum /2 and vice
versa, since the operators A2 and /> do not com.nute.

The classification of states of the harmonic oscillator using the
group SUj; but using eigenfunctions of the orbital angular momen-
tum / is more difficult than the classification using the quasispin
operators A. There is no linear combination of the operators of the
Lie algebra (4.9) which commutes with the orbital angular momen-
tum operators, analogous to the operator N which commutes with
all the quasispin operators. There therefore is no simple way to
represent the multiplets on a diagram analogous to those used for
elementary particles because there is no quantum number analogous
to N to label the vertical axis. There is no simple way of defining
another quantum number in addition to /% and /5 to classify the
states in an SU; multiplet. The additional quantum number is not
necessary to label the states of a single three-dimensional oscillator
where the quantum numbers /* and I, are sufficient to classify the
states in any of the triangular (n,0) multiplets. If the quasispin
classification is used, the quasispin quantum numbers 2% and 4, are
already sufficient for the classification and the additional quantum
number N is redundant, being determined uniquely by the values
of A? and . Thisis no longer true in SU; multiplets which are not
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triangular where several states having the same quasispin occur
with different values of N. Such multiplets arise in the classifica-
tion of the states of a system of several three-dimensional har-
monic oscillators. In such a case, the classification of the states
using angular momentum rather than quasispin is difficult be-
cause several states arise having the same angular momentum
quantum numbers. The additional quantum number needed to
distinguish between them is not easily defined.

We thus see one essential difference between the SU, subgroup of
the group SU; and the R; or three-dimensional rotation subgroup
of SU,;. Although both of these groups have a Lie algebra consisting
of the three operators satisfying angular momentum commutation
rules, the geometrical and physical significance of the two groups is
quite different. The SU, subgroup consists of unitary transforma-
tions in a two-dimensional space which is a subspace of the three-
dimensional space in which the SU; transformations are defined.
The R 5 group is a group of real (not complex) rotations in the whole
three-dimensional space defined by the group SU;.

In using the angular momentum classification of harmonic
oscillator states, a different set of linear combinations of the eight
operators (4.9) of the SU; Lie algebra is more convenient.

lo=(@"%a,—ata.) =21, (4.10a)
liy= F(abaz+a'ap) =F(Cy++B;), (4.10b)
gir=—)6a%az =—/6A,, (4.10c)
g1 = —1/3(a3a¢—afiao) = —V—j(ci—Bi) , (4.10d)
qo=2abap—alta,—ala_=—-3N. (4.10e)

The eight operators now appear as the three orbital angular mo-
mentum operators and a set of five operators which transform under
rotations like the elements of a second rank tensor. The latter are in
fact just a linear combination of the quadrupole moment tensors in
configuration and momentum space. The operator g, is proportional
to N but commonly normalized to have integral rather than third-
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integral eigenvalues. The negative sign is chosen to give it the con-
ventional sign of a quadrupole moment. Since no linear combination
of the five quadrupole operators commutes with all the angular
momentum operators, we see that there is indeed no operator analo-
gous to N in the quasispin representation which can be simultane-
ously diagonalized along with /*> and /,. The commutation rules of
the operators (4.10) are

Lo 1:] =14, (4.112)
[, 121 =21, (4.11b)
[losqm] =mq,, (4.11¢)
[lssqm]  =)/6—m(mEt)qpss, (4.11d)
[90,9:1]1 = i3l/§lil > (4.11¢)
[91:9-11 = -3, (4.11£)
(42, 9-21 =6l,, (4.11g)
[9s2: 9511 = +3)21:, (4.11h)
(90,9121 =[9+1,9+21=0. (4.11i)

Let us now attempt to find one of the Casimir operators which
commutes with all of the eight operators. We first look for an
operator which is a quadratic form in the operators (4.10) by
analogy with the operator /? for angular momentum. Since the
Casimir operator must commute with all the operators (4.10) it
must commute with the angular momentum operators and there-
fore be a scalar under rotations. There are only two scalars which
can be constructed that are quadratic in these operators, namely the
total angular momentum /2 and the square of the quadrupole
moment. Examining the commutators of an arbitrary linear com-
bination of these two operators with g,, we find one particular
linear combination which commutes with all of them.
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C=36B+Y(=)"qmd-m] (4.12a)

=6 {ON*+1225+6(A+ A_+A_A,+B,C_+C_B, +
B_C,+C,B.)}, (4.12b)

(G g.1=1[C, 1,1=0, (4.12¢)

where the coefficient 5l is a conventional normalization factor.

4.3. SYTEMS OF SEVERAL HARMONIC OSCILLATORS

The algebra of the group SU; can also be used to classify the states
of a system of several harmonic oscillators. An example of such a
system is the harmonic oscillator nuclear shell model in which a
number of particles are assumed to move independently in a har-
monic oscillator poteuntial. The treatment for a single oscillator is
easily extended to this case by defining corresponding oscillators
for each particle and defining the operators of the Lie algebra by
summing over all particles. Let x,; and p,; be the coordinates and
the momenta of the ith particle and a,; and a}; be the corresponding
annihilation and creation operators (4.2). We can define the quasi-
spin 4;, the angular momentum /; and the quadrupole tensor g; for
the ith particle. Operators for a Lie algebra describing the whole
system can be defined by summing eq. (4.10) over all of the particles.

L =,Zl" (4.132)
4 :2,1“ (4.13b)
0, = Ei:q""‘ s (4.13¢c)
C=3%[3L2+§(—)"'Q,,,Q_m]. (4.13d)

We assume that the operators B,, B_, C,, C_ and N are now de-
fined as sums over all particles. The summing over all particles does
not affect the commutation relations of the operators and we again
have an SU; Lie algebra.
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The states of the system can be classified according to the multi-
plets of SU; by noting that each individual particle is in a state
corresponding to a particular SU; multiplet and combining these
multiplets according to the rules for coupling SU; multiplets. Let us
first consider a system of several particles each in the first excited
energy level of the oscillator potential (the p-shell). This corresponds
in the nuclear shell model to those nuclei having the lowest oscillator
shell filled and a number of particles in the next shell. There is a
high degeneracy of states for this system, as each particle has a
three-fold degeneracy (since nucleons are fermions and cannot
occupy the same state, the degeneracy is reduced somewhat in the
nuclear model). We can classify the degenerate states of the system
by noting that the three states for a single particle are just the saka-
ton triplet (1,0). The multiplets which arise in the system of n
particles in the p-shell are just those arising in the n-sakaton system
subject to the restrictions of permutation symmetry including the
spins and isospins of the particles.

The second excited level of the oscillator has six states and cor-
responds to the (2,0) SU; multiplet. Nuclei having the lowest two
shells filled and the second excited level (the sd-shell) partially filled,
can be treated by coupling together the appropriate number of
(2,0) multiplets. Note that the closed shells do not contribute to the
classification since a closed shell always corresponds to a singlet
(0,0) multiplet.

One can now ask what useful purpose is served by classifying
states of the harmonic oscillator using the group SU;. For the
single oscillator, we see that the group may give some insight into
the additional degeneracy of the system beyond that of angular
momentum. However, all the states of the oscillator are convenient-
ly classified by the principal quantum number and the angular mo-
mentum quantum numbers and no further quantum numbers are
needed. For the case of many particles in an oscillator potential it
is possible to find several states having the same angular momen-
tum quantum numbers. Additional quantum numbers are then
necessary to specify the states completely and the SU; classifi-
cation may be useful.
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4.4, THE ELLIOTT MODEL

A case of particular interest is the model first proposed by Elliott
in which an additional two-body interaction of the quadrupole type
is added to the oscillator Hamiltonian to remove some of the de-
generacy. The Hamiltonian has the form

H=Hosc_VZ(—)mqmiq—mj (414)

ijm

where H, represents the Hamiltonian for the particles moving
independently in the harmonic oscillator well. The remaining term
is a two-body interaction which might be considered as the quadru-
pole term in the expansion of a general two-body interaction in
spherical harmonics. The Hamiltonian (4.14) can be rewritten

H= Hosc_VZ(_)QOQ—m
=H, —36CV+3VL*. (4.15)

From eq. (4.15) we see that the quadrupole interaction is just the
sum of a term proportional to the Casimir operator C and a term
proportional to the total orbital angular momentum L?. The eigen-
functions of the Hamiltonian with the quadrupole interaction are
thus those linear combinations of the degenerate harmonic oscil-
lator functions which are simultaneous eigenfunctions of C and L?.
Since any state which is a member of an SU; multiplet is automatic-
ally an eigenstate of the Casimir operator C, the required eigenfunc-
tions are obtained by first classifying the states of the system into
SU; multiplets and then choosing the states within the multiplets
to be eigenfunctions of the total angular momentum L?. The
energy spectrum exhibits a splitting between the SU; multiplets
which is proportional to the eigenvalue of the Casimir operator C
and a splitting within the multiplets which is proportional to the
square of the angular momentum. Since an energy spectrum pro-
portional to L? is just a rotational spectrum, we see that each SU,
multiplet constitutes a rotational band whose ‘moment of inertia’
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is given by
1
25

The SU; model was first used to demonstrate how ‘collective’
features, such as rotational bands, could be obtained from an
independent-particle shell-model treatment. The SU; classification
is useful in shell-model calculations where the residual interaction is
reasonably well represented by a quadrupole force and the remain-
ing portion of the residual interaction can be treated as a pertur-
bation. Note that this particular case is one in which the Hamilto-
nian does not commute with all of the operators of the Lie algebra
but commutes with the Casimir operator and the angular momentum
operators. Thus the SU; quantum numbers can still be used to
classify the states, and the members of a given multiplet are not
degenerate eigenfunctions of H but have a simple energy spectrum
determined by the algebra of the operators; in this case simply
proportional to L?.

Because the Hamiltonian does not commute with all the operators
of the Lie algebra, we are not at liberty to choose the particular
members of the algebra we wish to be diagonal. We are compelled
to take L? and one of the angular momentum operators and cannot
use the more convenient quasispin operators A. Elaborate mathe-
matical techniques have been developed for using the representation
in which A and N are diagonal and then projecting out states having
a good angular momentum. These techniques are beyond the scope
of this treatment.

=3V. (4.16)



CHAPTER 5

ALGEBRAS OF OPERATORS WHICH CHANGE THE
NUMBER OF PARTICLES

5.1. PAIRING QUASISPINS

The isospin Lie algebra was obtained by considering all bilinear
products of neutron and proton creation and annihilation operators
which do not change the number of particles. Let us now include
those bilinear products which change the number of particles. There
are just two independent operators

Sy = a;af, ) (5.1a)
S_=a,a,. (5.1b)

These operators create and annihilate respectively a neutron—proton
pair in the same quantum state. These two operators together with
the three isospin operators and the baryon number (2.1) constitute
the six linearly independent bilinear products which can be made
from the proton and neutron operators for a single quantum state.
Note that if nucleons were bosons rather than fermions, there would
be four additional operators corresponding to the creation and
annihilation of neutron and proton pairs having both particles in
the same quantum state.

The operators s, and s_ commute with all the isospin operators.
This can be verified by either calculating the commutators or by
noting that a proton—neutron pair in the same quantum state has
total isospin zero, and that the addition or removal of such a pair
from a system cannot change the isospin. The operators s, and s_
do not commute with the baryon number since they clearly change

69
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the number of particles. A more convenient operator to use instead
of the baryon number is

So=3B—1) =§(a}a,~ayal). (52)

The three operators s, s_ and s, are now found to satisfy ordinary
angular momentum commutation rules:

[$0, 841 =54+, (5.3a)
[SOa s.]=-s_, (53b)
[s4,8_1=2s¢. (5.3¢)

We can thus call the s-operators quasispins. The commutation re-
lation for the quasispin operators, the corresponding relation for the
isospin operators and the fact that the quasispins and isospins
commute with one another constitute the complete set of commuta-
tion relations for the Lie algebra:

[to, Tl =74, (5.4a)
[to, T-] = —7_, (5.4b)
[t4,1-]1=214, (5.4¢)
[t ] =0. (5.4d)

The Lie algebra of this set of six operators can therefore be ex-
pressed in terms of two sets of operators satisfying ordinary angular
momentum commutation rules. There is therefore no difficulty in
constructing all matrix elements of operators relevant to this algebra
and in defining the structure of the multiplets. These are just direct
products of two angular momentum multiplets. '

There is no apparent physical meaning to this Lie algebra even
after its extension to include space and spin by analogy with eq.
(2.3). There is no system of nucleons where the addition or removal
of a proton—-neutron pair in the same quantum state has particular
significance. The same quasispin algebra arises, however, in the
treatment of pairing correlations in many-fermion systems. The
relations (5.1), (5.2) and (5.3) can be applied to any two-fermion
quantum states, not necessarily those of a proton and a neutron.
Consider two quantum states denoted by k and —k which might
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be two states with equal and opposite momentum +#k. We can
define quasispin operators

Sie=ajat,, (5.5a)
S_k=a_kak, (S.Sb)
sor=Hafay—a_zaly). (5.5¢)

These quasispin operators now correspond physically to the addi-
tion or removal from the system of a pair of particles having equal
and opposite momentum. Quasispin operators of the type (5.5) can
be defined for any number of values of the momentum k and ‘total
quasispin’ operators can be defined by summing the operators (5.5)
over the set of states k under consideration:

S =;S+k > (5.62)

S_=Ys_y, (5.6b)
k

So = ;Sok . (5.60)

These quasispin operators can be useful in considering pairing
correlations because a simplified two-body pairing interaction can
be expressed easily in terms of these operators. Consider, for
example, the interaction

V=-GYalal,a_, a 5.7

Kk’
where the sum is over some particular set of states k. Such an interac-
tion has been used in the BCS theory of superconductivity and in con-

sidering pairing correlations in complex nuclei. The interaction (5.7)
is easily expressible in terms of the total quasispin operators (5.6)

V=-GS,S_=—G{S*~S}+5S,}, (5.8)
where the square of the total quasispin is of course just
S?=1(S,S_+S_S,)+5}. (5.9)

From the form (5.8) we can immediately characterize the eigenfunc-
tions of the pairing interaction (5.7)and determine all its eigenvalues.
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The eigenfunctions are just the simultaneous eigenfunctions of the
operators S2 and S, and the eigenvalues are obtained by direct sub-
stitution into eq. (5.8). The use of quasispin operators thus leads to
a complete solution of the pairing problem in the so-called
‘strong-coupling limit’; i.e. where the pairing force (5.7) is the domi-
nating part of the Hamiltonian.

Note that in this particular case, the three quasispin operators
associated with the addition or removal of pairs of particles to the
system have a direct physical significance; however, the other three
operators, which do not change the number of particles have no
direct physical significance. The latter, analogous to isospin oper-
ators, simply move a particle from one quantum state to the other;
i.e. from the state k to the state —k.

5.2. IDENTIFICATION OF THE LIE ALGEBRA

In considering the isospin Lie algebra we found that it was more
natural to consider it as the algebra of the group of unitary trans-
formations in two dimensions rather than that of three-dimensional
rotations. This interpretation was easily generalized to include the
case of three-dimensional unitary transformations. In order to
consider generalizations of the Lie algebra (5.3) and (5.4) let us now
specify more precisely the Lie algebra generated by the six bilinear
products formed from all possible combinations of proton and
neutron creation and annihilation operators. Experts on group
theory will recognize immediately that a Lie algebra of six operators
which can be separated into two independent angular momentum
algebras must be the algebra of the four-dimensional rotation
group. We can easily see this as follows. We first define the follow-
ing linear combinations of the creation and annihilation operators

y=al+a,, (5.10a)
v =i(a}—a,), (5.10b)
ps=al+a,, (5.100)

yo=i(al—a,). (5.10d)
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Examination of these operators shows that the square of any one
of them is unity and that any pair of them anticommutes,

Vv +7;7:=20;; . (5.11)

The operators (5.10) are four independent linear combinations
of the proton and neutron creation and annihilation operators. The
set of all independent, bilinear products of the operators (5.10) will
be some linear combination of the set of all bilinear combinations
of the proton and neutron operators; i.e. they will be some linear
combination of the quasispin and isospin operators (5.3) and (5.4).
Let us define the operators

Lij=4%yiv;  (G#)), (5.12a)
Lij=—Lj, (5.12b)
where eq. (5.12b) follows from the anticommutation relation (5.11).

We see that there are indeed six independent operators of the type
(5.12) and that they satisfy the commutation rules
[Lija Lyl =Ly=—Ly (i#k), (5.13a)
[Lij, Ly,,] =0 if no two indices are equal. (5.13b)
The commutation rules (5.13) are just the natural extension of
angular momentum commutation rules to four dimensions. We can
consider the indices i, j, kK and m as the directions of four axes in a
four-dimensional space and the operator L;; as the component of
the angular momentum in the direction of the axis normal to the
ij-plane. We note that for any set of three indices i, j and k we define
a three-dimensional subspace of the four-dimensional space and
the three operators L;;, Lj and L,; satisfy the commutation rules
of ordinary angular momentum operators in three dimensions.
We are now in a position to generalize these results to the case of
an arbitrary number of creation and annihilation operators. Let us
consider first the case of three states in the same way that we
generalized isospin to obtain the Sakata model of elementary
particles. We now wish to find the Lie algebra obtained by the most
general set of independent, bilinear products of proton, neutron
and A creation and annihilation operators. The preceding treatment
is easily generalized by defining the following two new operators:
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ys=ay+a,. (5.142)
76 =i(al—ay), (5.14b)

The definition of the operators L;; (5.12) is easily extended to in-
clude the operators y5 and y¢. By analogy with the previous case,
we see that we have here the Lie algebra of the rotation group in
six dimensions. The generalization of these results to an arbitrary
number of quantum states is straightforward and evidently leads to
the following result: Consider the set of fermion creation and anni-
hilation operators a} and g, for n values of k. These may either be n
different kinds of fermions or » different states of the same fermion.
Then the set of all possible bilinear products of these creation and
annihilation operators is a set of n(2n—1) operators which consti-
tute the Lie algebra for the rotation group in 2n dimensions. The
set of all bilinear products of operators which do not change the
number of particles, i.e. the product of a creation operator and an
annihilation operator, is a set of n* operators which are a subset of
the operators forming the Lie algebra of the rotation group in 2n
dimensions. These operators constitute the Lie algebra of the group
of unitary transformations in #» dimensions. One linear combination
of these n? operators is the operator of the total number of particles.
It is therefore possible to separate the set of n* operators into the
total number operator and a set of n*> — 1 operators which constitute
the Lie algebra of the special unitary or unimodular unitary group
in n dimensions and is denoted by the letters SU,,.

5.3. SENIORITY

One might ask if it is possible to generalize the quasispin oper-
ators (5.1) which we obtain in the case n=2 and which allowed us to
separate the Lie algebra of the four-dimensional rotation group
into two independent angular momentum algebras, one of which,
the isospin algebra, is just that of the unitary group which does not
change the number of particles. One can see immediately that the
exact analogy is not possible in general. In the case n=2 it was
possible to find an operator which created a pair of particles in a
state of isospin zero; i.e. belonging to the singlet multiplet of the
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SU, group. In the Sakata model this is no longer possible. There is
no state of two sakatons which belongs to the singlet multiplet of
SU;. There is therefore no hope of finding operators which create a
pair of sakatons and which commute with all of the operators in
the SU; algebra.

On the other hand, quasispin operators of the type (5.5) can be
defined for any case where the number of quantum states n is even
and can be grouped into pairs schematically denoted by k and —k.

An example of the use of these quasispin operators is in the
seniority classification of nuclear states in the jj-coupling nuclear
shell model. Let us consider a set of 2j+1 creation operators a},
creating a fermion in a state of total angular momentum j with pro-
jection m on the z-axis. The set of all possible bilinear products of
creation and annihilation operators forms the Lie algebra of the
rotation group in 2(2j+1) dimensions. Consider the multiplets
corresponding to this Lie algebra which are relevant to the classifi-
cation of states of any number of fermions distributed among these
2j+1 single-fermion states. We find that all of the many-fermion
states can be classified into two multiplets; one containing all the
states having an odd number of particles and the other containing
all the states having an even number of particles. This is evident
since successive operation with the operators of the Lie algebra can
connect any state having an even number of particles to any other
state having an even number of particles, and similarly for the odd
states. The unitary subgroup corresponding to those operators
which do not change the number of particles is SU,;, ;. All possible
states of a given number of particles in this j-shell correspond to
a single multiplet of the group SU,; ;.

Let us define quasispin operators aralogous to (5.6)

S+ =%Z(_1)j_ma}ma},~m’ (5153.)
S- =%Z(_])j_maj,—majm’ (5.15b)

— t t
SO - %Zajmajm — i —mdj, - (SISC)
m



76 OPERATORS CHANGING THE NUMBER OF PARTICLES §5.3

where the additional factor of 1 is inserted because the summation
over all the values of m includes each term twice. The phase factor
(— 1y~™ is inserted by convention. We see that S, is an operator
which creates a pair of particlesin a state of total angular momentum
J =0, while S _ annihilates such a pair of particles. Using these qua-
sispin operators, we can define two quantum numbers by the eigen-
values of the total quasispin operator (5.9) and the component S,.

The states of this system can be classified into quasispin multi-
plets. Let us examine the properties of these multiplets. We denote
the states by |S, Sy, ) where o represents all other quantum num-
bers independent of quasispin. From eq. (5.15c), the operator S, is
simply related to the total number of particles, n.

So =3m—j—1%), (5.16a)
n=28,+j+%. (5.16b)

The eigenvalues of S, depend only on the number of particles
and vary between +3(2j+ 1), being zero in the middle of the shell.
Since each eigenvalue of S, occurs only once in a given quasispin
multiplet, these multiplets consist of states each having a different
number of particles. For a multiplet of a given total quasispin S, S,
varies from — S to + S and n varies between the limits

Npin(So=—S8) =j+3-28S=v, (5.17a)
Npae(So=+8) =j+3+25 =2j+1-v, (5.17b)

where v is defined as the minimum number of particles occurring in
a given quasispin multiplet and is called the seniority number.
Since n and v are simply related to S, and S by egs. (5.16b) and
(5.17a), the states of the system can be labeled by the quantum
numbers |n, v, a) as well as |S, Sy, o).

A state having the minimum number v of particles has n=v, or
equivalently S,= — S and satisfies the relation

S_|v, v, ) =S8_|S, =S, ) =0. (5.18)
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The entire quasispin multiplet can then be built from this state by
successive operation with the operator S, ; i.e. by successive addi-
tion of a pair of particles coupled to total angular momentum zero.
The relation (5.18) implies that the lowest state in the multiplet
contains no pairs coupled to angular momentum zero, since the
pair annihilation operator S_ ‘cannot find such a pair’ in the state
and gives zero.

In this quasispin or seniority classification system, the states are
thus described as a state of v particles containing no pairs of zero
angular momentum plus an arbitrary number 4(n —v) pairs of zero
angular momentum. The states defined by this quasispin representa-
tion are automatically eigenfunctions of a pairing interaction analo-
gous to (5.7)

V= GZ( D2 mmal al g @ (5.192)

Js
=—GS,S_=—-G(S*-S¢+5S,) . (5.19b)

Using eqgs. (5.16) and (5.17), the eigenvalues of this pairing inter-
action are easily expressed in terms of the number of particles n and
the seniority number v:

—1G(n—v)(2j+3—-n—-v). (5.20)

The seniority classification is particularly useful in cases where a
pairing interaction plays a dominant role in the residual interaction,
just as the SUj classification treated in § 4.4 is useful in cases where
a quadrupole interaction is dominant.

Further interesting properties of the seniority classification are
obtained from the commutation relations between the quasispin
operators (5.15) and single creation and annihilation operators.

[S:,dl,1=[S_,a;]1=0, (5.21a)
[S4, @] =(=1Y""a} _,,, (5.21b)
[S-,al]=(-1Y"a; ., (5.21¢)
[So, al,] =1al,., (5.21d)

[509 ajm] = —iajm . (5216)
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These relations show that the pair of operators (al,,; (—1) ""a;, )

behave like ‘two-component spinors in quasispin space’.

Any single creation or annihilation operator thus behaves like a
component of a quasispin spinor. Products of two operators are
linear combinations of quasispin scalars and quasispin vectors.
Using the standard relations for combining two spins of one half to
obtain the singlet and triplet states, we can construct the products

S(m, m") = l]/f{a}m(— l)j"'”'aj,_m, —(- l)j'"'aj,_,,,a}m.}
=432{(=1Y "™ ala; _p + (=1 "l a; ), (5.222)
Vo(m, m") =3/2{al, (= 1) "™ a; _p + (1) ""a;_,al,}, (5.22b)
Vi(m, m") = at,al,., (5.22¢)
Vo(m,m)=(=D>"""a; a; (5.22d)

where S(m, m") is a quasispin scalar and V,(m, m’), V,(m, m") and
V_(m, m") are the three components of a quasispin vector.

[S+9 S(m9 ml)] = [S—’ S(m’ m’)] = [SOs S(ms m,)] =0 ,(5233')

[S+’ V+(m’ ml)] = [S—’ V—(ms m,)] = [SOs Vo(m, ml)] =0 ’(523b)

[SO’ Vi(m, ml)] =+t Vi(m, ml) B (5230)
[Ss, Vo(m, m")] =)/2Vy(m, m"), (5.23d)
[Ss, Va(m, m)]=)2Vy(m, m’). (5.23¢)

For each set of values (m, m") a quasispin scalar S(m, m") and a
quasispin vector V,(m, m’) can be constructed, except for the case
m=m’" where the scalar exists but the vector vanishes. The scalar
operators are of particular interest, since they commute with all
the quasispin operators (5.15). Any function of these quasispin
scalars is diagonal in the quasispin or seniority classification.
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It is of interest to examine the behavior of the bilinear products
of creation and annihilation operators also under rotations in
ordinary three-dimensional configuration space; i.e. their commuta-
tion relations with the ordinary angular momentum operators. The
set of creation operators a}m transform among themselves like the
components of an irreducible tensor of degree j, and similarly for
the corresponding annihilation operators, with a suitable choice of
phases. One can therefore construct irreducible tensors from bilinear
products of operators by standard angular momentum couplings,
for example

Ty =(jmm'k g)a}al, , (5.24)
Ty =(jmmlkq) (=1 ""ala_, , (5.24b)

where T, and T}, are two irreducible tensors of degree k.

These irreducible tensors in ordinary configuration space can be
expressed in terms of the quasispin vectors and scalars using the
relations (5.22). The tensor T, (5.24a) contains only creation oper-
ators and therefore must be a component of a quasispin vector. A
well-known property of the Clebsch-Gordan coefficients is that they
do not change in absolute value with exchange of m and m’, and
do not change sign (for half-integral j) if k is odd, while they do
change sign if k is even. Since a},a} +a, a},=0, T, vanishes for all
odd values of k£ (another way of stating the well-known result that
two identical fermions in the same j-shell can couple only to even
values of the total angular momentum). By the same property of
the Clebsch-Gordan coefficients, the tensors Ty, (5.24b) consist of
pairs of terms corresponding to given values of m and m’ which are
quasispin scalars S(m, m’) if k is odd and quasispin vectors Vy(m, m")
if k is even. '

From these examples, we see that all odd tensors in configuration
space constructed from bilinear products of creation and annihila-
tion operators are quasispin scalars, while all even tensors are
quasispin vectors. The three components of the quasispin vector
are three even tensors, one like (5.24a) composed only of creation
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operators, one composed only of annihilation operators and one
like (5.24b) composed of products of a creation and an annihilation
operator. The quasispin scalar is always of the form (5.24b). Simple
counting shows that the number of independent tensor components
is equal to the total number of independent bilinear operator prod-
ucts and that this is in turn equal to the total number of indepen-
dent quasispin vector and scalar components. Thus any bilinear
product can be expanded in irreducible tensors. The odd tensors
constructed from bilinear products are quasispin scalars, alll such
odd tensors commute with the quasispin operators and are diagonal
in the seniority classification. Any interaction between particles
which can be expressed as a function of only odd tensorsis diagonal.
The standard multipole expansion of a two-body interaction is an
expansion in irreducible tensors which are just bilinear products
(single-particle operators in the Schrédinger representation). Thus
the contributions from the odd multipoles are diagonal in the seni-
ority classification. This classification can be expected to be useful
in treating an interaction which consists mainly of a pairing inter-
action (5.19) and an interaction constructed from odd tensors.

5.4. SYMPLECTIC GROUPS

The set of quasispin scalar operators S(m, m’) defined by eq. (5.22a)
constitute a Lie algebra. They are the set of linear combinations of
bilinear products of a creation and an annihilation operator which
commute with all the quasispin operators. The commutator of any
two such operators is thus some combination of the operators of
the set. This algebra is included in the algebra of the group SU,; ., 4,
which includes all products of a creation and an annihilation oper-
ator. Let us attempt to identify this Lie algebra. The total number
of independent operators is just the total number of pairs (m, m’)
which can be made from 2j+1 values of m, including m=m’,
but counting (m, m") and (m’, m) only once. This therefore gives
3(2j +1)(2j +2), suggesting the rotation group in 2j+2 dimensions.
However, closer examination which is beyond the scope of this book
indicates that this is only true for certain values of j. In general
one obtains a new algebra which has the same number of operators
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as that of the rotation group in 2j+1 dimensions but is different
from it. This group is called the symplectic group in 2j+1 dimen-
sions.

Some basic properties of symplectic groups are obtained by
noting that the set of operators (5.22a) commute with the quasispin
operators (5.15) and can be considered to generate infinitesimal
linear transformations on the set of creation or annihilation oper-
ators al,, and a;,, and that the set of creation operators a},, can be
considered as a vector in a space of 2j+1 dimensions and the same
for the corresponding annihilation operators. It is therefore natural
to consider the symplectic group operators as performing transfor-
mations in a space of 2j+1 dimensions, rather than of 2j+2. The
three quasispin operators (5.15) are bilinear products of components
of vectors in this 2j + 1-dimensional space which are invariant under
the transformations of the symplectic group; i.e. they commute with
all the operators of the Lie algebra. However, it is evident by in-
spection that the quasispin operators are not ordinary scalar prod-
ucts of two vectors in this 2+ 1-dimensional space, as would be
the case if the transformation which left them invariant were an
ordinary rotation. The symplectic group is thus a kind of linear
transformation in a vector space which leaves invariant a peculiar
kind of bilinear product of two vectors.

Let us now specify more precisely the kind of vector product
which is left invariant by symplectic transformations. From eqs.
(5.15) we see that the components of each vector are classified into
pairs, denoted by +m and —m, and the product consists of terms
in which the +m-component of one vector is multiplied by the —m
component of the second. Thisis also true for Sy, since a;,, annihilates
angular momentum +m and transforms like an object which creates
angular momentum (—m). The product also has the property of
being antisymmetric with respect to interchange of the two vectors,
or of the members of all the conjugate pairs +m and —m. The
general product of two vectors X and Y contains the combination
XY _n—X_,.Y,.. We thus see that symplectic groups can be de-
fined only in vector spaces having an even number of dimensions
and that they leave invariant an antisymmetric product of two vec-
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tors requiring the classification of the dimensions of the space into
conjugate pairs.

Let us now examine the behaviour of these symplectic transfor-
mations for the particular case of the jj-coupling shell model. We
note immediately that for half-integral values of j, 2j+1 is always
even as is necessary for the definition of a symplectic group. Let us
now consider the action of the operators (5.22a) on some many-
particle state. These operators commute with all the quasispin
operators (5.15) and cannot change the number of particles nor the
seniority number v. Seniority defines a division of the number of
particles into v particles in which there are no pairs coupled to
angular momentum zero and 1(n—v) pairs of angular momentum
zero. The symplectic group operators cannot change this division.
They can change the states of the v particles which are not coupled to
angular momentum zero, but they cannot change the number of
pairs coupled to zero. This is just what is implied by their commuta-
tion with the quasispin operators: they leave invariant a two-particle
state with angular momentum zero.

The multiplets generated by these operators of the symplectic
group in 2j + 1 dimensions thus consist of states all having the same
number of particles and the same seniority, but having the v
unpaired particles in different states. They are complementary in a
sense to the quasispin multiplets, which also consist of states having
the same seniority, but differ in having different total numbers of
particles (i.e. different numbers of added zero pairs), while the v
unpaired particles are left essentially in the same state (except for
Pauli principle effects which restrict overlap of the wave function of
the v particles with those particles in the added pairs). ’

We shall now see that the quasispin operators themselves, (5.15),
are more naturally interpreted as the Lie algebra of the symplectic
group in two dimensions, rather than that of the three-dimensional
rotation group. As in the case of isospin, there is no physical three-
dimensional space associated with these quasispin operators in any
simple way. Rather, the quasispin operators generate infinitesimal
transformations mixing the components of two-component objects;
namely the quasispin spinors (al,; (—1)"™"a; _,). This is also
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analogous to isospin, which generates infinitesimal transformations
between proton and neutron states which can be considered as
spinors in a three-dimensional isospin space. However, it is more
natural in both cases to consider these two-component objects as
vectors in a two-dimensional space, rather than spinors in a three-
dimensional space which has no direct physical interpretation. In
the case of the quasispin operators (5.15) it is evident that the
transformations generated in the two-dimensional space are
symplectic, rather than unitary as in isospin. The product of two
vectors in the two-dimensional space which remains invariant under
the quasispin transformations is just the product S(m, m’) defined
by eq. (5.22a) which commutes with all quasispin operators. This
product is not the ordinary scalar product of two vectors, which re-
mains invariant under unitary transformatious, butis justthe peculiar
antisymmetric product which remains invariant under symplectic
transformations. Since there are only two dimensions in the space,
the two dimensions are conjugate to one another, and the antisym-
metric product of two vectors is formed by taking the product of
one component of the first vector with the other component of the
second and taking the difference between the two terms formed in
this way.

The symplectic group in # dimensions is usually denoted as Sp,.
We see that the Lie algebra of Sp, is the same as that of SU, and
the ordinary angular momentum algebra. This is another example of
a Lie algebra of rank one which is the same as that of angular
momentum.

5.5. SENIORITY WITH NEUTRONS AND PROTONS.
THE GROUP Sp,

Let us now consider the extension of the quasispin operators (5.15)
to the case where there are both neutrons and protons in the same
j-shell. Let af, and a, denote creation operators for a proton and a
neutron respectively in a state of total angular momentum j with
projection m on the z-axis. The index j is omitted for convenience,
since all operators used in any specific case refer to the same value

of j. There are now 2(2j+1) single fermion states, and 4(2j+1)
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different single fermion creation and annihilation operators. The set
of all possible bilinear products thus forms the Lie algebra of the
rotation group in 4(2j+ 1) dimensions, and the subset of bilinear
products which does not change the number of particles forms the
Lie algebra of the unitary group in 2(2j+ 1) dimensions. We note
that the isospin operators (2.3) are a particular subset of the oper-
ators in the unitary group in 2(2j+1) dimensions.

There are three ways of making a pair of particles with zero
angular momentum: a proton-proton pair, a proton-neutron pair,
or a neutron-neutron pair. In the isospin formalism a pair of nucle-
ons with zero angular momentum is a member of an isospin triplet,
having T=1 and three possible states with To= +1, 0 and —1.
The quasispin operators (5.15) can be extended to this case by
defining three quasispins, one for proton-proton pairs, one for
neutron-neutron pairs and one for neutron—proton pairs. These
three quasispins do not commute among one another. The com-
mutator of an operator creating a proton pair with one annihilating
a neutron-proton pair is an operator creating one proton and
annihilating one neutron and turns out to be just the isospin
operator 7. Including all commutators leads to a Lie algebra of
ten operators, three pair creation operators, three pair annihilation
operators, three isospin operators and the total number operator
measured from the middle of the shell, like S, eq. (5.15¢). Since
10=5x4/2, the algebra of the five-dimensional rotation group is
suggested and also that of the four-dimensional symplectic group.
It turns out that the two algebras are identical, but that the sym-
plectic group has a simpler interpretation, as in the case of the quasi-
spins (5.15).

Let us now investigate the algebra in more detail. We denote
creation operators for a pair of nucleons in the state T=1, To= +1,
0 and —1 respectively by A%, 4} and 4!, the corresponding
annihilation operators by 4., A, and 4 _, and half the number of
particles measured from zero in the middle of the shell by N:

AL =1y (-1""al,al -, (5.25a)
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The additional normalization factor y2 is included in 4} and 4,
because protons and neutrons are not identical particles. With this

normalization the three pair creation operators constitute

an iso-

spintriplet. These operators can be shown tosatisfy the commutation

relations

[, AY] = +)24%;  [1o, AL1=+4L;  [1s, A}1=

+)24%

[ts, As] = —)240; [0, Ax]=FAs; [1s, Aol =—)245

[Ti’ Att] = [Ti’ AT—] = [TO’ AI)] = [TOs AO] = [TO’ NO] =
=[r4, No]=0

[No» AL1=+AL; [Ny, Al1= +4}
[No, Ayl = —Ay; [No, Aol = —4,
A:]=Not1o; [Al, Agd=No; [A4k, A]=[4}, A5]

=%V§Ti
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[4h, AL1=[4%, 401 =[4., A_1=[4:, 4] =4}, 4:1=0
[t4,7-] =270; [to,T2]=%7s .

The algebra is evidently of rank two. We can chogse N, and 7, to be
diagonal. The remaining eight operators are then represented
diagrammatically as shown in Fig. 5.1.
The diagram is easily con-
structed by noting that the
No pair creation and annihila-
1 tion operators constitute
At gAY isospin triplets which chan-
ge N, by +1 and that the
—= 2= To isospin operators do not
change N,.
From this set of oper-
ators (5.25) four independent
Fig. 5.1 sets of quasispin operators
can be found which satisfy
angular momentum com-
mutation rules; namely the proton pair, neutron pair, and proton—
neutron pair quasispins,and isospin. These correspond to directions
on the diagram of Fig. 5.1 of --45°, vertical and horizontal. The
proton pair and neutron pair operators commute with one another,
but none of the other pairs of quasispins commute. The correspond-
ing multiplet diagrams for this group form two-dimensional lattices
whose lattice vectors are those of Fig. 5.1. Like the multiplets of
the group SU, there may be several states occurring at a given point
on a diagram, and additional quantum numbers must be found to
distinguish between them. Since the proton pair and neutron pair
quasispins commute, two additional quantum numbers are available,
the total neutron quasispin and the total proton quasispin. These
can be shown to be sufficient for classifying the states within the
multiplet. Unfortunately, this classification is not convenient for
nuclear applications where the interactions conserve isospin to a
good approximation. The isospin does not commute with the
proton pair and neutron pair quasispins and is not diagonal in this
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classification. If the total isospin 7' is chosen to be diagonal, there
is no simple way to find another quantum number to specify the
states. The detailed multiplet structure can be determined by methods
analogous to those described for the group SU; in Chapter 3 and
Appendix A.

If the isospin operators are considered to be the Lie algebra for
the three-dimensional rotation group, the complete set of ten oper-
ators (5.25) can be shown to constitute the Lie algebra for a rota-
tion group in a five-dimensional space including, as a subspace, the
three-dimensional space of the isospin rotations. Operators L;;
satisfying the commutation relations (5.13) for a rotation group
can be defined as follows:

To=0L,,, (3.26a)
Ty = Ly3+ily,, (5.26b)
Al =L, +iL,,+i(Ls, +iLs,), (5.26¢)
Ay =L, FiLy,—i(Lsy Filsy), (5.26d)
Al =L, +iLs,, (5.26¢)
Ag=L,3—iLs;, (5.26f)
No=Ls,. (5.26g)

With respect to isospin transformations, the ten operators can be
classified as one isoscalar and three isovectors, with one isovector
being the isospin operators themselves.

Isospin is more naturally considered as the Lie algebra of the
group SU, rather than that of three-dimensional rotations, and
there is no simple interpretation for any five-dimensional space in
which the operators (5.25) generate transformations. These oper-
ators are simply interpreted as generatingsymplectictransformations
in a four-dimensional space by combining the two two-dimensional
symplectic transformations of the neutron pair and proton pair
quasispins. Let us define quasispin scalars S,(m, m") and S (m, m")
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for the neutron and proton pairs respectively, analogous to (5.22a)
Sa(m, mY=al, (=1 "™ a, _p—(=1""ay _palm, (5.272)
Sp(m, mY=al, (=1 " ay _pw—(=1)""a, _pal .. (5.27b)

The sum of these two quasispin scalars S,(m, m")+S,(m, m’) is
seen to be an isospin scalar,

[T:t’ (Sn +Sp)] = [1, (Sn+Sp)] =0. (528)

The operator S, +S, commutes with the neutron pair and proton
pair quasispins as well as with isospin. It therefore commutes with
all the ten operators (5.25), since the neutron—proton pair operators
can be made from commutators of isospin and the other quasispins.
The operator S, 4+ S, thus remains invariant under the transforma-
tions generated by the operators (5.25). The operator S, +S, has
the exact form of the antisymmetric product of two vectors which
remains invariant under symplectic transformations, if we define
@l als (=1Y " ™a, _p; (—=1Y"™ay, _,) as the components of a
vector in a four-dimensional space.

Since this Lie algebra is of rank 2, there are two independent
Casimir operators which commute with all the operators and which
can be used to label the multiplets. As in the case of SUj, the eigen-
values of these operators are probably complicated. However, two
quantum numbers which should be related to these Casimir oper-
ators are easily found. By analogy with the simple seniority case of
§ 5.3, we can expect the states within a given multiplet to be gener-
ated from a state containing a certain number v of particles in
which no pair is coupled to angular momentum zero; i.e. all the
pair annihilation operators give zero when acting on this state. By
successive operation with the operators (5.25) the states of the
multiplet are generated, all containing v particles with no pairs
coupled to zero and a number of additional pairs. The initial state
of v particles can be chosen to have a definite total isospin #,. The
two quantum numbers v and ¢, thus characterise the multiplet.
The quantum number v is again called the seniority and 7, is called
the reduced isospin.
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The result for the simple seniority case that any interaction con-
structed from odd tensors in ordinary configuration space is dia-
gonal in the seniority classification is easily generalized to the case
of seniority with neutrons and protons. The quantities S,(m, m")
and S,(m, m") contain only odd tensors, as shown by eq. (5.24).
Any odd tensor which is independent of the charge (i.e. an isospin
scalar) is expressible in terms of these quantities and therefore
commutes with all the operators (5.26) of Sp,. An interaction con-
structed from these odd tensors is thus diagonal in the classification
of seniority and reduced isospin.

5.6. LIE ALGEBRAS OF BOSON OPERATORS.
NON-COMPACT GROUPS

Let us now consider the Lie algebra formed by bilinear products of
boson creation and annihilation operators which can change the
number of particles. The simplest case is that of a single boson state,
with creation operator a' and annihilation operator a. This cor-
responds to the case of a single harmonic oscillator. There are three
independent bilinear products. For our purposes it is convenient to
define them as follows:

t, = Ya'a'+aa), (5.292)
t, = —%1(a*a7—aa) s (5.29b)
t; = Ha'a+aa"). (5.290)

Since there are only three operators, we expect to find a Lie al-
gebra of rank one which is the same as the angular momentum
algebra. However, the commutators of the three operators (5.29)
differ from those of angular momenta by a sign which cannot be
eliminated by any redefinition of phases.

[ty, 2] = —ity, (5.30a)
[t2, 3] =11y, (5.30b)
[t3, 1] =11, . (5.30¢)

It is possible to obtain operators satisfying commutation rules
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formally like angular momenta by defining

Ji=ity, (5.31a)
jo=it,, (5.31b)
Ja=t5. (5.31¢)

Then

U721 =1s s U2 J3l=Vi ; Us il =1, - (5.32)
However, the operators j; and j, are antihermitean rather than
being hermitean as in the case of angular momentum operators.
We can therefore use only those results from angular momentum
which depend on the commutation rules, and not those which use
the hermiticity of the operators. This leads to interesting differences.

We can define a ‘total angular momentum’

=it =Gttt (5.33)
As in angular momentum, j? commutes with all the operators (5.31),
and we can choosej? and j, to be simultaneously diagonal. However,
t, and t, are hermitean, rather than j; and j,. Eq. (5.33) shows that
the eigenvalue of j2 is less than the eigenvalue of j} for any state
which is a simultaneous eigenfunction of j* and j,.

We can again define step operators j, +ij,. However, the hermi-
tean conjugate of j, +ij, is —(j; —ij,) ! Thisleads to a modified step
operator equation, since hermiticity is used in determining the
coefficients. Let |j2, m) denote a simultaneous eigenfunction of j2
and j, with eigenvalues j? and m. Then by a procedure analogous to
that for angular momentum,

U ijlj%, m) = mm+1)—j*|j%, m£1y.  (5.39)
The reversal of the sign under the square root in (5.34) is consistent
with the observation that m? >j2, rather than vice versa. In eq.
(5.34), j> means the eigenvalue of the operator and corresponds to
the familiar j(j+1) for angular momenta. However, we have not
yet determined the eigenvalues of j? for this case.

The eigenvalues of j2 can be found by examining the end of the
multiplet. Since m? >j2, there must be a minimum value of m* for a
given value of j2. As in angular momentum the coefficient under the
square root must vanish at the end of the multiplet to prevent crea-
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tion of states beyond the end. Here, however, this condition leads

to the relation
jz = [mlmin{|m|min— 1} . (5‘35)

It is thus convenient to define a number j, such that the eigenvalue
of j? is j(j—1). We then have allowed values of m going in steps of
unity from +jto +oo and from —jto —oo. The Lie algebra does
not introduce any restrictions on eigenvalues of j, which could in
principle have a continuous spectrum. However, the explicit form
of #3, eq. (5.29), introduces restrictions, because its eigenvalues are
known. They are all positive, thus eliminating the negative eigen-
values, and they are quarter-integral; i.c. §, 3, 3, etc., because of the
factor % in the definition of ¢.

Evaluation of the operator j? explicitly in terms of the creation
and annihilation operators reveals that it is a very trivial operator;
a c-number equal to — . This corresponds to two values of j, as
the relation j(j—1)= — has two solutions, j=% and j=3. The
states with j=4 have m=1, 2, 2, ... and those with j=2 have m=3},
Z,4L, .... These are just the states of a harmonic oscillator with even
and odd parity respectively, or even and odd numbers of quanta.

The algebra becomes less trivial if a set of » harmonic oscillators
is considered. This might be several particles moving in an oscillator
potential or a multidimensional harmonic oscillator. If we let a}
and a, be creation and annihilation operators for the kth oscillator,
we can again obtain a Lie algebra like (5.30) by defining correspond-
ing operators summed over k:

T, = Y aial+acay) (5.362)
k=1

T, = ) —iiaia,—aca), (5.36b)
k=1

Ty = Y i(ala+aal), (5.36¢)
k=1

[Ty, T,] = —iTy; [Ty, Ty]= +iTy; [Ty, Ty]1= +iT,, (5.36d)
JE=Ti-T}-T}. (5.36¢)
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The operator J? is no longer a c-number for this case. The eigen-
values of J? have the form J(J—1) where J is an integer or half-
integerif nis even and a quarter-integer if »n is odd. For each value of
J which occurs, a multiplet is defined which contains an infinite
number of states with eigenvalues of T starting at T3 =J and in-
creasing without limit in unit steps.

For the case where the set of oscillators represent a system of
particles moving in an oscillator potential, these multiplets have a
simple physical interpretation as collective vibrational bands.
Consider a system of particles moving classically in a harmonic
oscillator potential. Let them all be placed initially at the origin and
given arbitrary initial velocities at the same time. The particles exe-
cute independent oscillations with random amplitude and direction,
but all with the same frequency and in phase. An observer might
describe the motion as an expanding and contracting cloud of
particles moving in a collective oscillation at double the oscillator
frequency. In quantum mechanics, one cannot introduce correla-
tions by choosing initial conditions in space and time. However, a
state having collective properties can be constructed by choosing
an appropriate linear combination of degenerate states. A system of
particles moving in a harmonic oscillator potential has a highly
degenerate spectrum and different types of correlations are described
by choosing different linear combinations. The choice of those
states which are eigenfunctions of the operator J? (5.33) can be
shown to exhibit the collective dilatational oscillation or ‘breathing
mode’ analogous to the above classical example. The lowest state
in a band having a given value of J? describes some motion of
the particles with no collective dilatation present. The higher
states in the multiplet form a vibrational band based on this ‘intrin-
sic’ state, with a ‘phonon’ energy of just double the oscillator level
spacing.

Let us now examine the peculiar group of transformations de-
fined by this algebra of angular momentum operators with one
wrong sign. Such a sign difference is associated with rotations in a
space which is not Euclidean, but is of a Minkowsky type. The
transformations generated by the operators (5.33) are like Lorentz
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transformations in a three-dimensional space having a metric
x3—xi-x32.

However, there is again no three-dimensional space associated
with this problem in any simple way. If we consider the pair of
operators (a}, a;) as the components of a vector in a two-dimensional
space, we find that the antisymmetric product of two such vectors
a} a—a,al. commutes with the operators (5.33) and remains in-
variant under the transformation. The transformations are thus
more naturally considered to be symplectic transformations rather
than rotations or Lorentz transformations. We thus again encounter
the group Sp,. However, it is different from the group Sp, discussed
in § 5.4 for seniority because of the difference in sign in the com-
mutators.

We note another peculiar feature resulting from the ‘wrong sign’
in the commutation rules. The multiplets all contain an infinite
number of states. Groups having this property are called ‘non-
compact’ groups, in contrast to those we have considered up to this
point, which have multiplets of finite size and are called compact. If
we are constructing a Lie algebra with bilinear products of second
quantized operators, we shall obtain algebras of non-compact
groups whenever we include boson operators which change the
number of particles. The multiplets are all infinite, because there is
nothing to prevent operating again and again on a state with an
operator which adds a pair of bosons to the system. With fermion
operators, the procedure of adding pairs of particles must eventu-
ally end if there are only a finite number of states available. With
operators which do not change the number of particles, there are
again only a finite number of states for the many-particle system
and the multiplets must be finite, whether the particles are bosons
or fermions.

This treatment is easily generalized to consider the case of n-
boson states and all the bilinear products which can be constructed
from the creation and annihilation operators. The total number
of bilinear products is n(2n + 1), rather than n(2n— 1) for the corre-
sponding fermion case. The additional 2n operators are just the
squares (a})? and ai which vanish for fermions but are perfectly
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good operators for bosons. The number of operators n(2n+1)
suggests the rotation group in 2n+1 dimensions or the symplectic
group in 2n dimensions. From the simple case of n=1, we expect
that Sp,, is the correct assignment, and this can be shown to be
the case.

Note the similarity in character between the operators (5.33) and
the pairing quasispins. The three operators include a pair creation
operator, a pair annihilation operator and a number operator.
This analogy persists in the cases of higher dimensions, as is to be
expected since it also involves the algebra of the group Sp,,. For
the case n=2, we can consider a system of particles moving in a
two-dimensional harmonic oscillator potential. There is a direct
parallel to the neutron—proton seniority problem. Instead of creat-
ing neutrons and protons, one creates oscillator quanta in the x-
and y-directions. There are three pair creation operators xx, yy
and xy, analogous to pp, nn and pn. The SU, group formed by the
operator products which do not change the number of particles,
discussed in Chapter 4, is analogous to the isospin group, and there
is again the operator of the number of particles. However, the group
defined by the boson operators is again non-compact, as indicated
by the possibility of adding pairs ad infinitum. If the algebra of
Sp, for bosons is examined, differences in sign from the fer-
mion case are again encountered. Since the algebra of Sp, is the
same as that of the five-dimensional rotation group, one can ex-
amine the commutators for the boson case and find that it corre-
sponds to the Lie algebra of the De Sitter group, a group like
the Lorentz group in a five-dimensional space having a metric
x24x?—xi-xi—xi.

5.7. THE GENERAL CLASSIFICATION OF LIE ALGEBRAS OF
BILINEAR PRODUCTS

We have now identified the Lie algebras generated by taking all

possible bilinear products of second-quantized operators for a

finite number n of states. Both fermions and bosons have been

considered, and algebras consisting only of products which do not

change the number of particles as well as those including products
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which change the number of particles. The four possible cases are
summarized in Table 5.1.

TABLE 5.1
Statistics Numb.er of . .Number of Lie algebra | Compact
particles bilinear products
fermions unchanged n? Ux yes
fermions changed n(2n—1) Ran yes
bosons unchanged n2 Un yes
bosons changed n(2n+1) Span no




CHAPTER 6

PERMUTATIONS, BOOKKEEPING AND
YOUNG DIAGRAMS

Permutation symmetry is useful in treating states of many-particle
systems. It is also useful in combining multiplets of a particular Lie
algebra and in determining the structure of multiplets which can
be built up from smaller multiplets. The basic principle behind
this usage is that the operators of a Lie algebra defined for a system
of identical particles are symmetric with respect to permutation of
the particles. Operators which produce permutations of particles
thus commute with the operators of the Lie algebra. States of systems
of identical particles belonging to the same multiplet of some Lie
algebra must all have the same permutation symmetry. The use of
this principle is illustrated in Appendix A in constructing the SU,
multiplets.

A familiarity with permutation groups is useful in treating such
problems, and a convenient tool for handling permutation problems
is the Young diagram or tableau. The purpose of this chapter is to
give the reader a general impression of permutation techniques and
the meaning and use of Young diagrams without going into the
detailed theory of the permutation group. The isospin couplings
in a many-nucleon system furnishes a convenient example.

The use of the isospin formalism for systems consisting only of
nucleons can in some respects be considered as merely a matter of
bookkeeping. The physical principle behind isospin is the charge
independence of nuclear forces. This states that as far as strong
interactions are concerned all nucleons are equivalent, whether
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they be neutrons or protons. However, life is not quite that simple.
Although all nucleons are equivalent, some nucleons are more
equivalent than others. The Hamiltonian may not care whether a
nucleon is a neutron or a proton, but the Pauli exclusion principle
does care. A wave function describing a system of nucleons must
be antisymmetric with respect to exchanges of neutrons or with
respect to exchanges of protons, but the Pauli principle does not
care about exchanging a neutron and a proton. Given a wave func-
tion which describes a particular state of motion of a system of
neutrons, the Hamiltonian says that we can change neutrons to
protons and vice versa at will without changing the forces and there-
fore without changing the motion of the particles. However, if we
start with a possible state of motion and change neutrons into
protons and vice versa we may end up with a state which violates
the Pauli principle.

Some system of bookkeeping is necessary in order to keep track
of the Pauli principle. This bookkeeping is simple only in the two-
nucleon system, which is treated in all elementary courses. The
bookkeeping of the three-nucleon system is already beyond the
scope of most simple treatments. The isospin formalism offers a
method for avoiding complicated bookkeeping.

Let us first consider the bookkeeping of a two-nucleon system.
The space-spin states can be either symmetric or antisymmetric.
The Pauli principle requires that if the two nucleons are really
equivalent, i.e. they are either both neutrons or both protons, then
only the antisymmetric states are allowed. However, if the two-
nucleon system consists of a neutron and a proton, then either
symmetric or antisymmetric states are allowed.

These same requirements are stated as follows using the isospin
formalism: The nucleon is represented as an isospin doublet with

=14 and one specifies the state of the nucleon by giving not only
its space and spin quantum numbers but the eigenvalue of 7, which
tells whether it is a neutron or a proton. One then requires (‘gener-
alized Pauli principle’) the total wave function to be antisymmetric
in space-spin and isospin. It is convenient to use wave functions
which are products of a space-spin part and an isospin part. The
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overall wave function must be antisymmetric. Thus, if the space
part is antisymmetric the isospin part must be symmetric; i.e. it
must have T'=1. There are three states with 7'=1: a neutron-neutron
state, a proton—proton state, and the symmetric proton-neutron
state. On the other hand, if the space-spin part is symmetric then
the isospin part must be antisymmetric; i.e. it must have 7'=0.
There is only a single T'=0 state, which must have one neutron and
one proton. We see again that the neutron-neutron and proton—
proton states must be antisymmetric in space and spin, whereas the
neutron-proton states can be either symmetric or antisymmetric.

The two-nucleon system is simple because we can always talk
about states as being either symmetric or antisymmetric. In a three-
nucleon system other symmetries arise. It is easy to write down a
three-particle wave function which is either completely symmetric
or completely antisymmetric. However, there are also three-particle
states which are partly symmetric and partly antisymmetric; i.e.
they may be symmetric with respect to the interchange of one pair
of particles, but antisymmetric with respect to the interchange of
another. The generalized Pauli principle in the isospin formalism
requires that if the spacial part of the wave function has one of these
mixed symmetries, the isospin part should have some kind of com-
plementary mixed symmetry so that the overall wave function is
antisymmetric. The complicated bookkeeping problems which arise
here are avoided in the isospin formalism by use of coupling rules
which simply add isospins like angular momenta.

A convenient bookkeeping shortcut to keep track of symmetries
is the use of Young diagrams. The following pedestrian description
of how these diagrams can be used is not intended to berigorous, but
gives an idea of how the thing works. Let us represent each nucleon
in the system by a square [ |. We represent a two-nucleon system

by two squares. We write the two squares as a vertical array B to

represent a two-nucleon system with an antisymmetric isospin
function, i.e. with 7=0. We use a horizontal array of two squares
to represent two nucleons [ | | with a symmetric isospin func-
tion, i.e. in the state with 7=1. A state of three nucleons which
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is symmetric in isospin, i.e. has isospin 3, is represented by three
squares in a horizontal array.

[IT]

A state of n nucleons which is completely symmetric in isospin and
therefore has T=4n is represented by a horizontal array of n
squares.

In any system of three or more nucleons there must be at least one
isospin state occupied by two nucleons, since there are only two
possible states for the isospin quantum number of a single nucleon.
Thus, we cannot have a system of three or more nucleons which
has a wave function that is completely antisymmetric in isospin.
Although we can have as many squares as we please lined up in a
horizontal direction in a diagram indicating symmetric states in
isospin, we can never have more than two squares in a vertical line
indicating a {otally antisymmetric state.

We now have diagrams representing all possible states which are
either totally antisymmetric or totally symmetric in isospin; i.e. the
two-nucleon state with T=0 or the n-nucleon state with T'=1n.
We know that in general for an n-nucleon state we can have values of
T of in, tn—1, tn—2, etc. For example, the three-nucleon system
can have values of T of either $ or 1. We shall represent the state
of three nucleons with T=1 as follows:

i

This indicates that there are a pair of nucleons in the antisymmetric
state, T=0, and an additional nucleon. A state of six nucleons hav-
ing isospin 1 would be represented by

L]

Here we have two pairs of nucleons which are coupled to 7=0 and
represented by vertical arrays of two squares, plus two additional
nucleons coupled to T'=1, and represented by the horizontal array.
In general, we can represent an n-nucleon state having isospin T as
follows: First we have {n—T pairs of particles coupled to T=0 and
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represented by vertical arrays of two squares placed next to one
another. The remaining 2T nucleons are coupled to total isospin T
and represented by a horizontal array of T squares which are added
on to the diagram at the upper right. Each state is thus characterized
by two numbers: the number of nucleons » and the total isospin T.

Instead of the total number of particles n we can also use the
total number of antisymmetric pairs 4n—T. It is conventional to
define the quantum numbers A and u, such that A represents the
number of columns at the right-hand side of the diagram which
have only a single square, and p represents the number of columns
in the left hand of the diagram which have two squares.

L]

I A —
A=2T
u=3%in-T

The notation (4, ) is used to describe these states.

Then for a system of nucleons, Young diagrams can be used to
keep track of the number of states of different isospins that one
gets with a given number of particles by building up these states
adding up one particle at a time. We have seen that for the two-
particle system there are two possible symmetries, the antisymmetric

state B

which would be represented by =0, u=1 or (0,1). There is also
the symmetric state
(1]

which would be represented by the quantum numbers (2,0).

Let us now investigate the total number of states for the three-
particle system. The first two particles can be either in the symmetry
(0,1) or in the symmetry (2,0) and we must investigate all possible
ways of adding another particle. There is only one way of adding

[] to B : we get which is represented by the quantum
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numbers (1,1). On the other hand, there are two ways of adding

[J to [TJ. We obtain cither [ T 1], i.e. (3,0, or | ie.

(1,1). Thus the states for a three-nucleon system include two (1,1)
symmetries with =% and one (3,0) symmetry with T'=3%. To check
the bookkeeping we note that there are two possible isospin states
for each nucleon. There are in all 2>=8 possible isospin states for
a three-nucleon system. One T=% multiplet which has four states,
and two T'=4 multiplets each of which has two states, add up to 8
states which checks.

The total number of isospin multiplets in the system of # nucleons
is obtained in an analogous manner. One adds one square [ | in all
possible ways to the diagrams representing all the multiplets of the
n—l-nucleon system.

* The isospin formalism avoids all these bookkeeping complica-
tions by considering the nucleon to be a two-component spinor in
a fictitious isospin space and then using angular momentum coupl-
ing rules. The total number of isospin multiplets for the #-nucleon
system is obtained by examining the couplings of » independent
spins of 4. The first two spins can be coupled either to T=0 or T=1.
The third can couple to T=0 to give T=1%, or to T=1 to give either
T=% or T=%. We thus have three multiplets of T=1, 4 and 3 for
the three-nucleon system. The fourth spin can couple to either of the

=1 multiplets to give T=0 or T=1, or to the T=4% multiplet to
give T=1 or T=2. We thus have six multiplets of =0, 0, 1, 1, 1
and 2 for the four-nucleon system. This can be continued indefinitely.

The isospin formalism treats permutations in nucleon systems in
a simple way because the algebra of the operators which change
neutrons into protons and vice versa is the same as the algebra of
ordinary angular momentum. If we consider permutations in
systems of protons, neutrons and A’s we are led to the algebra
of the group SUj, as is discussed in Chapter 3. Here as in the
case of isospin, the same results for the classification of states of
the n-sakaton system are obtainable either by using the multiplet
structure and coupling rules for SU;, or by using permutation sym-
metry and Young diagrams. However, since the properties of SU;,
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are not as well known as those of angular momentum, it is simpler
to use permutation symmetry to classify the n-sakaton system and
to use these results to determine the multiplet structure of the group
SU,;. This is presented in Appendix A.

The extension of the Young diagram to the case of the Sakata
model is perfectly straightforward. Since there are now three
possible states for a particle, n, p and A, there can be a totally
antisymmetric state of three particles. The Young diagrams can
have three rows rather than two as in the case of nucleons. The
states of the n-sakaton system can also be constructed by adding one
square [_| to the Young diagrams representing the n—1-sakaton
system in all possible ways. This is illustrated in Appendix A. Young
diagrams can also be used to obtain rules for combining multiplets
each consisting of several sakatons. The rules for adding several
squares at a time to a diagram are somewhat more complicated
than those for adding only one particle. These rules are not treated
here and can be found in the standard literature.



APPENDIX A

CONSTRUCTION OF THE SU; MULTIPLETS BY
COMBINING SAKATON TRIPLETS

In this appendix we shall see how the multiplets of the SU; group
can be constructed by combining the simple sakaton triplets of
Fig. 3.2a. We shall examine the states of the n-sakaton system and
group them into SU, multiplets characterized by the values of the
quantum numbers A and p. In this way we determine the structure
of the multiplets, their shape as indicated by Fig. 3.4 and the
multiplicity of states at each point of the diagram, i.e. how many
isospin multiplets there are for a given value of strangeness, or N.

In considering the multiplets arising in the n-sakaton system, it
is convenient to examine the permutation symmetry of the different
states. The operators (3.1) of the Lie algebra act symmetrically on
all the particles in an n-sakaton system and therefore cannot change
the permutation symmetry of the state. For example, these operators
acting on a symmetric 2-sakaton state can only give other symmetric
2-sakaton states. They cannot mix symmetric and antisymmetric
states. Thus all the states of the n-sakaton system which belong to a
given SU; multiplet must have the same permutation symmetry
and, conversely, two states having different permutation symmetries
must belong in different SU; multiplets.

The use of Young diagrams is convenient in discussing permuta-
tion symmetry, but is not necessary for the treatment given below.
The reader who is unfamiliar with them can safely skip all references
to Young diagrams without losing any essential points, The reader
who is familiar with Young diagrams should find that they are
helpful but not essential.
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The quantum numbers A and p are introduced in two different
ways: (1) as labels for a multiplet defined by the shape of the multi-
plet diagram (Fig. 3.4) and (2) as labels for permutation symmetry
defined by the shape of a Young diagram. We shall see below that
the two definitions are equivalent if the Young diagram refers to the
permutation symmetry of the n-sakaton state from which the multi-
plet is constructed.

In discussing permutation symmetry for SU,, one can think of a
‘generalized isospin’. A many-sakaton wave function is considered to
be the product of a space-spin part and an SU;, part, by analogy with
the usual separation of a many-nucleon wave function into a space-
spin part and an isospin (SU,) part. In the Sakata model the
‘generalized Pauli principle’ would require that the overall many-
sakaton wave function be antisymmetric in space-spin and SUj;.
Permutation symmetry discussed below always refers to the SU; part
of the many-sakaton wave function.

We first examine the two-sakaton system. Since there are three
possible states for each sakaton we see that there are nine possible
states for the two-sakaton system. The values of strangeness occur-
ring are zero for two nucleons, — 1 for a nucleon and A4, and — 2 for

N
N
° o% e B (0,1
Z
1 Y 0 Y24 o > 7 T
° -'/3. ° -Ye l/2 o
. -%e
Mo |, o
Fig. A.1

two A’s.Since the baryon number is 2, the corresponding eigenvalues
of Nare 4, —} and —%. The S=0 two-nucleon combination contri-
butes four states, anisospin triplet, 7=1, and an isospin singlet, 7=0.
A nucleon and a A give an isospin doublet, T=%, S= —1, and
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similarly for a A and a nucleon. Two A’s give an S= —2, T=0
singlet.

These nine states can be conveniently divided into two SU; multi-
plets by making use of permutation symmetry. The symmetric and
antisymmetric combinations of the two-sakaton states form two
distinct multiplets, as shown in Fig. A.1. The two multiplets are
conveniently labeled by the appropriate Young diagram and the
quantum numbers (4, ). The construction of the two diagrams of
Fig. A.1 is easily achieved as follows: We note that the S=0 two-
nucleon states divide into the symmetric, T=1, and the anti-
symmetric, T=0. The two-A singlet with S= —2 is clearly symme-
tric. The two doublets of the A-N system can be arranged to form
two linear combinations, one of which is symmetric and the other
antisymmetric.

Before continuing further in the construction of multiplets, we
note that there exists a three-sakaton state which is totally antisym-
metric since there are three different kinds of sakatons rather than
two as for nucleons. Such a three-sakaton state would be denoted

by the Young diagram

Young diagrams for many-sakaton systems would therefore have
the general form

L[]

including some columns having three squares as well as columns
having two squares and one square. However, we note that the
completely antisymmetric three-sakaton state must be an isosinglet
with baryon number 3, strangeness — 1, and therefore has the quan-
tum numbers N=0, T=0, T, =0. All the operators (3.1) except the
baryon number give zero when operating on this state. The anti-
symmetric three-sakaton state thus has the same SU,; quantum
numbers as the vacuum. If we are only interested in the structure of
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the SU; multiplet, we can disregard the columns having three
squares in any Young diagram. These simply add three units to the
baryon number without changing any other quantum numbers.
We can therefore find the structure of all possible multiplets by
examining orly those Young diagrams consisting of columns
containing only 1 or 2 squares. The quantum numbers (4, u) are
therefore sufficient to describe these diagrams and therefore each
SU,; multiplet is characterized by the two appropriate quantum
numbers (4, ).

The totally antisymmetric three-sakaton state is an SU; multiplet
which is a singlet having the same quantum numbers as the vacuum.
This singlet is represented by the quantum numbers (4, u) =(0, 0).
The multiplet (0, 1) representing the antisymmetric two-sakaton
system also represents the antisakaton triplet, A, p,andni. Thisis not
surprising since the antisymmetric two-sakaton system is formed by
removing a sakaton from the antisymmetric (0, 0) three-sakaton
state which has the same quantum numbers as the vacuum.

We now consider all the multiplets arising in the three-sakaton
system. Since there are three states for each sakaton there are in all
27 possible states for the three-sakaton system. Let us now divide
these 27 states into SU5 multiplets. One state is clearly the totally
antisymmetric three-sakaton state mentioned above which stands
by itself in a (0,0) singlet. Another multiplet is formed by all the
states which are totally symmetric.

The structure of the totally symmetric three-sakaton multiplet is
easily obtained. The maximum value of strangeness is zero and this
corresponds to N=1, since B=3. The N=1 part of the .nultiplet
consists of a totally symmetric 3-nucleon state which is therefore an
isospin quartet with 7'=%. The N=0 (S= — 1) part of this multiplet
consists of states of one A and two nucleons which are totally sym-
metric and therefore constitute an isospin triplet with 7=1. The
N= —1(S= —2) part of the multiplet consists of states of a single
nucleon and two A’s and must therefore be an isospin doublet with
T=1%. The N= —2 part of the multiplet is a three-A state which is
an isospin singlet with 7=0. The totally symmetric three-sakaton
states thus form a (3,0) multiplet as is shown in Fig. 3.6a. It is also
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evident that the totally symmetric three-sakaton state is represented
by the Young diagram EEE

which has the appropriate quantum numbers (3,0). The (3,0)
multiplet has 10 states and is therefore called a decuplet.

We now see that the (0,0) singlet and the (3,0) decuplet have used
up 14+ 10=11 of the 27 states of the three-sakaton system. Sixteen
states remain to be accounted for.

The analysis of the remaining 16 states is facilitated by noting that
we can consider the three-sakaton system as constructed by adding
a sakaton to a two-sakaton system. The two-sakaton system can be
either in the symmetric (2,0) multiplet with 6 states or the anti-
symmetric (0,1) multiplet with 3 states. Adding a sakaton to the
symmetric (2,0) two-sakaton multiplet gives a total of 6x3=18
possible states. Ten of these states must constitute the totally
symmetric (3,0) three-sakaton multiplet, leaving 8 states to be
classified. If we add a sakaton to the antisymmetric (0,1) two-
sakaton multiplet there is a total of 3 x 3=9 states. One of these
states is the totally antisymmetric (0,0) multiplet, and we are again
left with 8 states to be classified. These two sets of 8 states add up to
the 16 mentioned above. One might suspect that these 2 sets of 8
states would both correspond to multiplets of the same kind. This
suspicion is supported by examining the quantum numbers of the
states which remain to be classified. We find that both sets of 8
states have the same quantum numbers; namely, an isospin doublet

=1 with N= +1, an isospin triplet (T=1) and an isospin singlet
(T'=0) with N=0, and an isospin doublet (T=%) at N= — 1. Plotting
these states in a diagram one finds the structure of the (1,1) octet
shown in Fig. 3.3.

Let us now examine the octet of three-sakaton states in detail and
verify that they indeed form a singlet SU; multiplet, and in par-
ticular that the isospin singlet 7=0 at N=0 belongs in the (1,1)
multiplet and is not another separate (0,0) multiplet. We note that
the state of maximum strangeness in this multiplet is the S=0,
N= +1 three-nucleon state. This state cannot be totally symmetric
(T'=3%) because the totally symmetric state belongs in the totally
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symmetric (3,0) three-sakaton multiplet. The only other possible
symmetry for a three-nucleon system has 7'=4. This symmetry is
represented by the (1,1) Young diagram

|

and again illustrates the equivalence of (4, p) classifications by the
shape of the multiplet and by the Young diagram. The minimum
value of N occurring in this multiplet is N= —1 (S=—1), corre-
sponding to two A’s and a nucleon, since the three-A system
must be totally symmetric and can only appear in the totally
symmetric (3,0) multiplet. This N= —1 part of the multiplet is
clearly an isospin doublet since a one-nucleon, two-A state cannot
be anything else.

The N=0 (S= —1) part of the multiplet now remains to be in-
vestigated. This is a two-nucleon, one-A system and can be either
an isospin triplet (7’=1) or an isospin singlet (7=0). That both the
triplet and the singlet occur in the (1,1) multiplet can be seen as
follows. The states of the N =0 part of the multiplet can be obtained
from the states of the N =1, two-nucleon isospin doublet by the
operation of the operators C, or C_ which change a nucleon into a
A. The three-nucleon doublet can be considered to be composed of
two nucleons which are coupled to total isospin 0, with an additional
odd nucleon giving the isospin . We see that if we change the odd
nucleon into a A we have effectively killed off its isospin and are
left with the isospin of the T=0 nucleon pair. This state is an isospin
singlet. On the other hand, if we change one of the two nucleons in
the pair to a A, we kill off its isospin thereby leaving the isospin 4 of
its partner nucleon free to couple with the odd nucleon to give T'=1,
a triplet, or T'=0, a singlet. We see therefore that the N=0 part of
the (1,1) SU; multiplet contains two kinds of isospin multiplets, a
triplet (T=1) and a singlet (7'=0). Since we obtained the isospin
singlet in two ways, we might ask whether there might be two isospin
singlets in the (1, 1) multiplet; i.e. whether one can form two linearly
independent 7=0 states by operating on the N=1 doublet with the
C-operators which change a nucleon into a A. That this is not the
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case is evident from counting states. We already use up all the eight
states with only a single 7=0 state. The structure of the (1,1)
multiplet is illustrated in Fig. 3.3b.

In our analysis of all the multiplets arising in one-, two-, and
three-sakaton systems we have also incidentally found the following
relations for combining multiplets.

0 0 B
(1,0) L0 - @0 + O (A.l2)
3.x 3 = 6 4+ 3

X

1] [ (r1ty L

2,00 x (1, - G0 + @1 (A.1b)
6 X 3 = 10 + 8
N
d o H
©,1) x (1,0 - 1,) + (0,0 (A.lo)
3 X 3 = 8 + 1
o PP L
L] [ [ L] L]
(1,0) x (1,0) x (1,0) - (3,0) + (1,1) + (1,1) + (0,0) (A.1d)
3 x 3 x 3 =10 4+ 8 + 8 + 1

Under each multiplet is written the number of states in the multiplet,
and we see that the total number of states in the product on the left-
hand side of the equation checks with the total number in the sum
on the right-hand side. Note that the relations (A.1) could be ob-
tained directly from the Young diagrams without discussion of the
multiplet structure.

Let us now consider all the multiplets arising in the six-sakaton
system. We jump to the six-sakaton system because the particular
multiplets of interest in the octet model or eightfold way arise in the
six-sakaton system. The multiplets arising in the octet model all
have integral values of N. Integral values of N occur in the Sakata
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model only when the number of sakatons is divisible by three.

The multiplets which are of particular significance are those
containing at least one state of strangeness zero (N =2). The multi-
plets which contain no states of strangeness zero have N=1 as the
largest value of N in the multiplet and are always the same as some
multiplet arising in the three-sakaton system. These multiplets
having no states of N=2 can always be broken down into a direct
product of a totally antisymmetric (0,0) triplet and a multiplet
arising in the three-sakaton system.

Let us first examine the states of strangeness zero (N =2) arising
in the six-sakaton system. These are states of six nucleons which
can form isospin multiplets having 7=0, 1, 2 or 3. Since nucleon
states having different values of 7" have different permutation sym-
metries, the six-nucleon states having different values of 7 must be
in different SU; multiplets. We thus have four different kinds of
SU, multiplets containing states of N = +2 arising in the six-sakaton
system. The quantum number A=2T at the maximum value of N;
thus these four multiplets have respectively A=0, 2, 4 and 6. In a
Young diagram describing a system of nucleons, we also have
A=2T; thus the two definitions of A are equivalent.

Let us now examine these multiplets one at a time. The multiplet
beginning with 7=3, /=6 has at N= + 2, a totally symmetric state
of six nucleons. It therefore has at N= +1, §= —1, a totally sym-
metric state of 5 nucleons and one A which constitutes a single iso-
spin multiplet with 7=%. At N=0 (S= —2) it has totally symmetric
states of four nucleons and two A’s; a single isospin multiplet with
T=2. We can continue in this way until we reach N= —4 (S= —6)
where we have a single totally symmetric state of six A’s with 7'=0.
The value of T at the minimum value of N is therefore 7=0. Thus
u=0. The multiplet has (4, x) =(6,0) and is a straightforward gener-
alization of the (1,0), (2,0) and (3,0) multiplets which represent the
totally symmetric states of the 1-, 2- and 3-sakaton systems. The
multiplet diagram is an inverted triangle in which only a single value
of isospin occurs at each value of N and there are no double points.
Since the Young diagram for a totally symmetric state always has
u=0, we see again that the definitions of x by the Young diagram
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and the shape of the multiplet are equivalent. We can easily gener-
alize this to obtain the structure of the (»,0) multiplet representing
the set of totally symmetric states of an n-sakaton system.

We now can consider the multiplet beginning with T=2 at N=
+2 and which has A =4. The minimum value of N which can occur
in this multiplet is N= —3 (S= —35) corresponding to a state of
five A’s and one nucleon. The six-A state cannot occur here because
it must be totally symmetric with regard to permutations and there-
fore can only be in the totally symmetric (3,0) multiplet. Since a
state with only one nucleon must have T=% the quantum number
u=2T at N=N,;,, or u=1. Noting that the Young diagram for a
six-nucleon system coupled to T'=2 also has u=1 we again find
that the definitions (4, u) =(4, 1) are equivalent. The structure of the
remaining states of the multiplet can be obtained by a procedure
similar to that used for obtaining the structure of the (1,1) multiplet
in the three-sakaton system. We note that the N= +2 state of six
nucleons coupled to 7=2 can be considered as a pair of nucleons
coupled to T=0 and 3 nucleons coupled to 7'=2. We reach the
states having N= +1 (S= —1) by operating on these nucleon states
with the operators C, or C_ which change a nucleon into a A. If
we change one of the nucleons in the set of four coupled to 7=2
into a A we are left with a state having T'=3. If we change one of the
nucleons in the pair coupled to T=0 into a A then its partner nu-
cleon is now free to couple its 7=1 to the remaining four nucleons
to give T=%. We thus see that two values of T are possible for
N= +1, namely, T=% and T=3.

We now continue to the states N=0 (S= —2). These are states of
four nucleons and two A’s. The maximum possible value of isospin
is therefore T'=2. Operating on the S= — 1 states with the operators
C, and C_ which change a nucleon into a A allows us to reach the
states of 7=2 and T=1 but does not allow us to reach 7=0. By
continuing this procedure we find that at N= —1 (S= —3) we have
isospin multiplets with 7=3% and T=1 and that at N= —2 (S= —4)
we have isospin multiplets with 7=1 and 7'=0. The structure of
this (4,1) multiplet thus follows the general rule that the states on
the outside of the diagram are single, the next ring is double, and
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since this ring turns out to be a triangle, all of the states within the
triangle are also double. Thus except at the maximum and minimum
values of N where there is only a single isospin multiplet there are
always two isospin multiplets found at each value of N.

Let us now consider the multiplet beginning with N= +2, T=1,
A=2. The six-nucleon state coupled to T=1 can be considered as
composed of two nucleon pairs each coupled to T=0 and a pair
coupled to T=1. To find the minimum value of N or strangeness
occurring in this multiplet we note that the permutation symmetry
limits the number of nucleons which can be changed to A’s. Both
members of an antisymmetric pair of nucleons coupled to T'=0
cannot be changed to A’s because a pair of A’s must be symmetric
and can only be obtained from a pair of nucleons in a symmetric
state, i.e. which has T=1. We can therefore only make one A from
each of the two antisymmetric nucleon pairs coupled to T=0 and
make two more A’s from the two nucleons coupled to T=1. The
state of minimum N thus has four A’s and two nucleons. It has
N= -2, T=1 and therefore u=2. Since the Young diagram for a
state of six nucleons having T=2 also has p=2, the two definitions
of (4, w) both give (2,2) and are equivalent. The structure of this
(2,2) multiplet can be obtained in the same way as the preceding ones
by noting that each time we decrease N by one unit we are introduc-
ing an additional isospin of 4 which can be coupled to the isospin
of the preceding system in all possible ways, subject to the restric-
tion that the isospin can never be greater than half the number of
nucleons present at that value of strangeness. Thus at N= +1 we
have two isospin multiplets with T=% and T=%. At N=0 we have
three isospin multiplets with 7=2, 1 and 0. At N=—1 (S= —3)
there are only three nucleons present and the maximum possible
value of T is T=3. There are therefore only two isospin multiplets
having T=3 and T=4. The resulting SU, multiplet again satisfies
the general rule: the outer ring is single, the next ring is double and
the third ring consisting of a point is triple.

The final multiplet to be considered here is the one beginning
with the T=0 at N= +2, and A=0. Considering the 7’=0 six-
nucleon state to be made up of three pairs individually coupled to
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T=0 we see that we cannot change any more than three of these
nucleons into A’s and still have states of the same permutation
symmetry. The minimum value of N is thus N= —1 (S= —3) and
the remaining three nucleons have T'=% so that y=3. The Young
diagram for six nucleons coupled to T=0 also gives =0, u=3, and
again the two definitions are equivalent. This (0,3) multiplet is just
the inverse of the triangular (3,0) multiplet found in the three-saka-
ton system. To verify that this is the case we must check the states
arising at N=0 (S'= —2) to be sure that there is only a single iso-
spin triplet T=1 and no additional singlet with T=0. These states
are obtained from the N= —1 (§= —3) state of three nucleons
and three A’s with T=2 by changing one of the A’s into a nucleon.
Since this means coupling an additional isospin of 1 to T=% we
see that we cannot obtain a state with T'=0. The state of T=2
which one might obtain in this way is excluded when one works
from the top downward and notes that the N =0 states must also
be obtainable by changing one of the nucleons in the N= +1,
T=1% multiplet into a A.

Counting the number of states appearing in each multiplet we
arrive at the following results, which we combine with previous
results for the three-sakaton system.

(0,0) 1 state Nopox =0 T=0 at N=DNp.
1,0 8 states Nyax =1 T=% at N=N_,
3,0 10 states Npox =1 T=3 at N=N_,
0,3) 10 states Npax =2 T=0 at N=N_,
2,2 27 states Npax = T=1 at N=Np,,
4,1) 35 states Npax =2 T=2 at N=Np.
(6,0) 28 states Nox=2 T=3 at N=N,,.

The seven SU; multiplets listed above are all the multiplets having
integral values of N with a maximum value N,,,, =0, 1 or 2. Using
this table it is a straightforward problem to determine rules for
combining those multiplets having N,,,,=1; the results are:

LD+, D->0,0+, D+(2,2)+(1,1)+(3,0)+(0,3) ,
LD+G,0-0,D)+2,2)+(3,0+4,1),
(3,0)+(3,0) > (0,3)+(2,2)+(4,1)+(6,0) .
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The simplest way to obtain these results is by first examining the
states occurring at N, and then counting states. Let us consider
first the combination of (3,0) and (3,0). Since the (3,0) multiplet
has ten states the combination of two of them produces a total of
100 states which we now must divide into several multiplets. The
(3,0) multiplet has N,,,,=1 and has T=% at N=1. The maximum
value of N occurring in the combined system is then N, =2 and
the values of T occurring are 0, 1, 2 and 3. Each value of N, and
T determines a multiplet which must be present in the product of
two (3,0) multiplets. These are respectively the (0,3), (2,2), (4,1)
and (6,0). The total number of states present in these four multiplets
is 10427435428 =100. We have therefore accounted for all of
the states obtained by combining two (3,0) multiplets and need not
look for any more multiplets.

In combining two multiplets of the same kind one may be looking
at states of two identical particles and therefore it is often of interest
to examine the multiplets arising in the combined system from the
point of view of permutation symmetry. The permutation classifi-
cation is obtained immediately from the states at N = +2. If we are
combining two states of T'=3, the states with 7=0 and 7'=2 are
antisymmetric and the states with 7=1 and 7T'=3 are symmetric.
Thus we see that the (0,3) and (4,1) multiplets contain the anti-
symmetric states and the (2,2) and (6,0) multiplets contain the
symmetric states.

The combination of (1,1) and (3,0) can be carried through in a
similar fashion. Here however at N =2 the values of T are obtained
by combining T=% from the (1,1) multiplet with T=3 from the
(3,0) multiplet to give T=1 and 7'=2. We thus have a (2,2) multi-
plet and a (4,1) multiplet giving a total of 27+35=62 states. The
total number of states is 8 x 10=80. Eighteen states remain to be
classified. These must be in multiplets having N,,,, < 1 as we already
have used up all the states with N=2. Looking at the available
multiplets we see that this can be done with a (3,0) multiplet and a
(1,1) multiplet giving 10+ 8 =18 states. One might obtain 18 states
by other combinations involving a large number of (0,0) singlets.
These possibilities can be eliminated by examining the total number
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of states having N=1 arising in the combination of (1,1) and (3,0)
multiplets. In the (1,1) multiplet there are two states with N=1 and
four states with N=0. In the (3,0) multiplet there are four states
with N=1 and three states with N=0. States of N=1 of the com-
bined system are obtained by all possibilities of combining the states
of N=1 from one multiplet and N =0 from the other. We thus have
2x3+4+4x4=22 states at N=1. Since the (2,2) multiplet has 6
states at N=1 and the (4,1) multiplet has 10 states at N=1 the
combination (1,1)+(3,0)+(2,2)+(4,1) has 2+4+6+10=22
states, which checks. Other combinations in which some of these
multiplets are replaced by several (0,0) multiplets would not give
the right number as the (0,0) multiplet has no N=1 states. Since
the (1,1) and (3,0) multiplets are not equivalent one cannot con-
sider symmetric and antisymmetric combinations.

The combining of two (1,1) multiplets is done in the same way.
Here the values of T occurring at N=2 are T=1 and T=0, and give
(2,2) and (0,3) multiplets. These account for 27+10=37 of the
total number of states, namely, 8 x8=64. Since the two (1,1)
multiplets are equivalent, we can examine permutation symmetry.
The (2,2) multiplet which has T'=1 at N=2 contains symmetric
states of the combination and the (0,3) multiplet which has T=0
at N =2 contains antisymmetric states. To find the remaining multi-
plets in the combination we first apply similar arguments at the
minimum value of N, namely N= —2. Here the (1, 1) multiplets also
have states of 7=1 at N= —1, giving two multiplets, one with 7’=0
and the other with 7’=1. The multiplet with 7=0 at N= —2 is the
(3,0) multiplet and the other is the (2,2) multiplet which we have
already found. The (2,2), (0,3) and (3,0) multiplets now account
for 27410+ 10=47 states. There remain 17 states from the total
of 64. These must be placed in multiplets which have no states with
N= +2 or N= —2. This just corresponds to two (1,1) multiplets
and a (0,0) multiplet.

Examination of the symmetries of the N=1 and N=0 states
appearing in these multiplets indicate that the (1,1) multiplet may
contain either symmetric or antisymmetric states while the (0,0)
must contain a single symmetric state. It is thus convenient to
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group these multiplets into three symmetric multiplets, (0, 0), (1,1)
and (2,2) and three antisymmetric multiplets, (1,1), (3,0) and (0, 3).
Note however that this classification is not essential. In particular,
any linear combination of the two (1,1) multiplets is also a (1,1)
multiplet and its transformation properties under the operators of
SU, are like any other (1,1) multiplet. Thus two (1,1) multiplets
can be constructed by using any linear combination of states arising
in the symmetric and antisymmetric multiplets. In physical prob-
lems where the two particles appearing in the two multiplets are
not of the same kind there may be physical reasons why other
linear combinations are more suitable for defining the (1,1) multi-
plets rather than the symmetric and antisymmetric states.

These same procedures can be used to find all the SU; multiplets
and their combination rules. The multiplets of course get larger and
the calculations more unwieldy as (4, p) increase. In the present
state of elementary-particle physics the larger multiplets are of little
physical interest as there are no known particles to fit into them.
Note that if any particles fitting into larger multiplets are found, a
tremendous number would be necessary to fill up the multiplet. The
multiplets which we have already considered include all having inte-
gral values of N and less than 50 states [except for the (0,6) and (1,4)
multiplets which are obtained trivially by inverting the (6,0) and
4,1)].

The matrix elements for the operators (3.1) between states of a
multiplet can be calculated in a straightforward but tedious manner
from the states of the Sakata model. One can write explicit expres-
sions for the wave functions of the states of a given number of
sakatons belonging to a given SUj; multiplet. Using these wave
functions, the calculation of the matrix elements can be carried out
explicitly. However, it is more convenient to obtain these matrix
elements using SU, subgroups as is discussed in Appendix B.



APPENDIX B

CALCULATIONS OF SU; USING AN SU, SUBGROUP:
U-SPIN

To make physical predictions on the basis of the SU; classification
of elementary particles one needs coefficients for coupling the vari-
ous multiplets, analogous to the Clebsch-Gordan coefficients for
coupling angular momenta. The necessity for calculating new tables
of coefficients can be avoided by using the SU, subgroups of SU;.
Since the algebra of SU, is the algebra of angular momentum, rela-
tions using the SU, subgroups involve the algebra of ordinary an-
gular momentum and therefore the well-known and well tabulated
Clebsch-Gordan coefficients. Furthermore, since most physicists
are very familiar with angular momentum and have an intuitive
feeling for their coupling, one can see at a glance many results for
SU, which would cither require calculation or looking at tables for
SU,.

We have seen that the algebra of SU, is obtained as a natural gen-
eralization of SU, using the Sakata model of elementary particles.
The neutron, proton and lambda are all considered to be equivalent
and all possible transformations of sakatons into one another are
examined. Another possibility would be to consider only neutrons
and lambdas and ignore the proton for the time being. Considering
the algebra of all possible bilinear products of neutron and lambda
operators which do not change the number of particles would lead
to an SU, algebra directly analogous to isospin. However, instead
of changing neutrons into protons and vice versa we would change
neutrons into lambdas. This algebra can be characterized by an
‘equivalent angular momentum’ analogous to isospin, which we call
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U-spin. We can use all the angular momentum results in treating
U-spin, classify all states into U-spin multiplets, etc., and examine
the experimental consequences of ‘conservation of U-spin’.

In the framework of the Sakata model we see that U-spin conser-
vation implies that neutrons and lambdas are equivalent. Since in-
variance under SU, implies that neutrons, lambdas and also protons
are equivalent, invariance under SU; includes U-spin conservation
as a special case. On the other hand, assuming that both U-spin
and isospin are conserved implies from U-spin conservation that
neutrons and lambdas are equivalent and from isospin conservation
that neutrons and protons are equivalent. The two together thus
imply that neutrons, protons and lambdas are all equivalent and
therefore imply unitary symmetry with the full SU; group in the
Sakata model. All the consequences of unitary symmetry in the
Sakata model can therefore be obtained by examining the simultane-
ous consequences of isospin and U-spin conservation. Since iso-
spin and U-spin involve only the algebra of SU, groups which are
like angular momenta we can therefore determine all the experi-
mental consequences of SU; by just coupling angular momenta of
one kind or another.

We now examine the U-spin classification and the U-spin multi-
plets. In the Sakata model the U-spin transformations of neutrons
and lambdas into one another change the strangeness of a particle
but do not change the charge. U-spin multiplets therefore consist of
sets of states all having the same charge and different strangeness
rather than vice versa, as in the case of isospin multiplets. Since the
operators (3.1) which change neutrons and lambdas into one
another are the operators B_ and C, we can examine the operation
of U-spin transformations on our multiplet diagrams. From Fig.
3.1 we see that the operators B_ and C, move from one state to
another along a line at an angle of 120° from the horizontal isospin
operators. Looking at the diagrams of Fig. 3.2 and Fig. 3.7 for the
basic particles in both the Sakata and octet models of unitary sym-
metry we see that this direction at an angle of 120° from the isospin
operators corresponds in both models to lines of constant charge.

Let us now develop the algebra of the U-spin subgroup of SU;
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without specific reference to the Sakata model so that the results can
be applied to the octet model as well. We therefore define our U-spin
operators directly in terms of the operators (3.1) of SU, and the
commutation rules (3.2).

The operators B_ and C. are the operators that we want as the
U-spin generators. Their commutator is given from eq. (3.2b)

[B_,C.]1=1(3N-21,). (B.)
It is therefore convenient to define the U-spin operators
U,=B_, (B.2a)
v_=cC,, (B.2b)
U, =4(3N-27,) . (B.3)

Expressing the commutation rules (B.2) in terms of the U-spin
operators we obtain

[U,, U_1=2U,, [Uo, Usl==2Uy; . (B.4)

By analogy with angular momentum we can define the total U-spin
operator

U=4U,U_+U_U)+ U}, (B.5a)
[U%, Ul =[U? U,]=[U? U_]=0. (B.5b)

Noting from Fig. 3.1 that the operators B_ and C, move from one
state to another along a line where 1N + 7, is constant we can define
the operator

Q=%iN+1, (B.6a)
and note that

[Us, Q1=[U-, 0] =[U,, 0] =0. (B.6b)

The operator Q thus plays the same role in the U-spin representa-

tion of SU; as the operator N plays with regard to isospin. The

operator Q commutes with all the U-spin operators and corresponds

to motion on the multiplet diagram in a direction perpendicular to
the direction indicated by the U-spin operators.

In the octet model where N =Y, i.e. the hypercharge, the operator

Q defined by eq. (B.6a) is just the electric charge. In the Sakata
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model, N=1{B+S=Y—4%B. The operator Q defined by eq. (B.6a)
is therefore not the total charge unless the baryon number is zero.
However, the operator Q in the Sakata model differs from the
charge only by a function of the baryon number which is the same
through any multiplet. Thus in the Sakata as well as in the octet
model the states in a multiplet having the same value of Q have the
same charge, and U-spin transformations in both models do not
change the charge. U-spin multiplets thus consist of states all
having the same charge and different values of strangeness. The
multiplets can be described by diagrams in which the eigenvalue of
U, is plotted horizontally and values of Q are plotted vertically
rather than plotting T, and N. The result is simply a rotation of the
diagrams in Fig. 3.2, 3.3 and 3.6 by an angle of 120°. From the
diagrams of Fig. 3.4 showing the general shape of the multiplet we
see that the shape of the multiplet is left unchanged by the rotation
of 120°. As a result the rotated diagrams look exactly the same as
the unrotated ones except that the states in the same horizontal
line now belong to the same U-spin multiplet rather than to the
same isospin multiplet. Fig. B.1 illustrates this rotation for some of
the common multiplets in the octet model.

For SU; multiplets like the (1,0), (0,1), (3,0) and (0, 3) the trans-
formation to U-spin is straightforward since there is never more
than one state at a given point on the diagram. Thus the states at all
points on the diagram are eigenvectors of U, and U?. On the other
hand, in multiplets like the (1,1) or (2,2) there are certain values of
N and T, (or Q and U,) where more than one state occurs. An
example of this is the two states appearing at the origin of the (1,1)
multiplet. We have seen that one state belongs to an isospin triplet
with T=1 and one state corresponds to an isospin singlet with
T=0. If we consider the (1,1) multiplet from the point of view of
U-spin we find that one state must belong to a U-spin triplet with
U=1 and one to a U-spin singlet with U=0. However, the two
states which are eigenfunctions of U? are not the same two states
that are eigenfunctions of 7'2. We note that the operators 72 and U*?
do not commute with one another and therefore we should not
expect them to be simultaneously diagonal. For those cases where
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there is only one state at a given point on a diagram, i.e. only one
state with a given value of N and Ty, this state must be a simultane-
ous eigenfunction of T2 and U?, since both 72 and U? commute
with NV and Ty, If there is only one state having a given set of eigen-
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values of N and Ty, the operators 7% and U? cannot mix in other
states. However, as soon as there is more than one state in a multi-
plet having a given value of N and T, the particular eigenfunctions
which are eigenfunctions of 72 are not eigenfunctions of U? and
vice versa.

Fig. B.1 shows the relation between isospin and U-spin classi-
fications of some of the elementary particles in the octet model
which are classified in (1, 1) octets or the (3,0) decuplet. Correspond-
ing diagrams are related by a 120° rotation except for the points at
the center of the octet diagram. The two states at the center of the
octet which are U-spin eigenstates are linear combinations of the
isospin eigenstates.

To see how the coefficients in these linear combinations are de-
termined let us consider the baryon octet and determine the par-
ticular linear combination of the A and X°states which belongs in the
U-spin triplet and has U=1. Let us call this particular linear com-
bination

|U=1, Uy=0> =a|2°>+ Bl 4> (B.7)

where a and f§ are constants to be determined. Since the neutron is

the member of the same U-spin triplet with U, = +1 the standard

lowering relation analogous to eq. (1.7) for angular momentum
gives

U_In) =)/2{alZ° +pI4>} . (B.8)

Operating on eq. (B.8) with the isospin raising operator 7, then
gives

1, U_In)=2a|2"). (B.9)

We can now evaluate o by noting from the commutation rules
(3.2b) that the operators 7, and U_ commute. The operation of
these U-spin and isospin operators on the neutron state is easily
calculated in reverse order where the intermediate state is the proton
state and there are no ambiguities.

7, U_In)=U_t4|n)=U_|p>=(Z"). (B.10)
From eq. (B.9) and eq. (B.10) we obtain
a=1%. (B.11)
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From normalization we have
Bl =3%y3. (B.12)

The phase of f is not uniquely determined and is fixed by convention
to be positive. The U-spin singlet state at the center of the octet
diagram is then determined (except for a phase factor) by requiring
that it be orthogonal to the triplet state.

Note that this calculation of the values of « and S8 also constitutes
a proof that two states are required at the center of the octet. If there
were only a single state it would be a pure triplet in both isospin
and U-spin and egs. (B.9) and (B.10) would be inconsistent.

Another SU, subgroup in addition to isospin and U-spin can be
defined by using the operators C_ and B, . This would correspond
in the Sakata model to interchanging protons and lambdas. We
can again define an ‘equivalent angular momentum’ which we call
V-spin. There the commutator of B; and C_ is given by eq. (3.2b),

[Bi, C_-1=3(3N+21,) . (B.13)
It is therefore convenient to define the V-spin operators
V.,=C_, (B.14a)
V_=B,, (B.14b)
Vo = —3(BN+21,) . (B.14¢)

One could equally well have interchanged the definitions of ¥, and
V _ thereby changing the sign in the definition of V. The particular
choice made above is more symmetric with respect to the definitions
of isospin and U-spin as can be seen from Fig. 3.1. A rotation by
120° carries isospin into U-spin and U-spin into V-spin.

We have now expressed all of the operators (3.1) as either isospin,
U-spin or V-spin operators. It is now a comparatively simple matter
to calculate the matrix elements of these operators between states
of an SU; multiplet. They are just the matrix elements for the stan-
dard angular momentum raising or lowering operators (1.7) within
isospin, U-spin or V-spin multiplets respectively. One need only to
classify states in an SU; multiplet into U-spin and V-spin multiplets.
This is trivial except for cases like the center of the (1, 1) octet where
there are more than one state. The isospin, U-spin and V-spin
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eigenstates are generally different linear combinations of these
states. However, the appropriate linear combinations can be de-
termined in the same manner as has been done for the A and the X°.
A consistent phase convention must be chosen for all the step oper-
ator relations. This is a non-trivial problem because the conventional
choice of phases in angular momentum step operator relations (1.7)
cannot be used simultaneously for isospin, U-spin and V-spin
without introducing inconsistencies. This point is discussed further
in Appendix D.

Since all the SU; operators (3.1) are expressible as isospin, U-
spin and V-spin operators, the requirement that any Hamiltonian
be invariant under the transformations of the group SU, is equi-
valent to the requirement that it be invariant under isospin, U-spin
and V-spin transformations. In fact, invariance under isospin and
U-spin transformations is sufficient to require invariance under all
the SU; transformations since V-spin is not independent of isospin
and U-spin. The V-spin operators are clearly obtainable from the
U-spin operators by an isospin transformation. One can therefore
obtain all the results following from SU; invariance by requiring
isospin and U-spin invariance. The latter formulation is particularly
convenient since it is expressed in terms of ordinary angular mo-
mentum algebra and simply requires that both isospin and U-spin
be conserved. We have chosen U-spin rather than V-spin because
of its more direct physical interpretation. Particles in the same U-
spin multiplet have the same value of the electric charge, whereas
particles in the same V-spin multiplet have in common only a par-
ticular linear combination of electric charge and strangeness which
has no direct physical significance.

Using the isospin, U-spin and V-spin operators we can now easily
construct one of the Casimir operators of SU;. If we can construct
an operator which commutes with all the isospin, U-spin and V-
spin operators, it commutes with all the operators of the group and
satisfies the condition for being a Casimir operator. We can con-
struct such an operator by requiring it to be a scalar under isospin
rotations and to contain isospin, U-spin and V-spin in a symmetric
way. We note from the commutation rules (3.2) that the operator N
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is a scalar under isospin transformations and that the pairs of
operators (B,, B.) and (C,, — C_) transform like two-component
spinors. A linear combination of the total isospin operator T2, the
operator NZ and the scalar product of the two spinors is clearly a
scalar under isospin transformations. We therefore try

C=3(t 1 41 1, +U, U_+U_U,+V, V_+V_V,)+154+aN?
(B.15)

We have used U, and V. rather than B, and C. in order to show
explicitly the symmetry of the operator with respect to isospin, U-
spin and V-spin. The operator (B.15) is a scalar under isospin rota-
tions and is clearly symmetric with respect to isospin, U-spin and
V-spin except for the last two terms. We now wish to choose the
coefficient « to complete this symmetry. This is easily done by
noting from the definitions (B.3) and (B.14c) of U, and V, that

1o+ Us+V2e=3N*+372. (B.16)
Setting « =% and using eq. (B.16) gives

C=3(r,t_+1_ 1, +U, U_+U_U, +V, V_+V_V,)+
+3(t5+ U+ V)

=T 4+ U+ V2-4(2+ U2+ VD). (B.17)
From the form (B.17) we see that the operator C is completely
symmetric in isospin, U-spin and V-spin, while from the form (B.15)
we see that it is a scalar under isospin transformations. It therefore
commutes with all the isospin operators and by symmetry with all
the U-spin and V-spin operators, and is thus a Casimir operator
for the group SU;. Comparing this result with (4.12) we see that we
have found the same Casimir operator, but have chosen a different
normalization.

From the expression (B.17) we can easily calculate the eigenvalue
of the operator C for any multiplet (4, p). Since all members of an
SU; multiplet are eigenfunctions of C with the same eigenvalue,
we pick a convenient member, namely the state at the right-hand
end of the top row in the multiplet diagram. This state is a simul-
taneous eigenfunction of isospin, U-spin and V-spin with T=1%4,
U=1%p and V'=1%(A+ p). This state is also at the end of all these spin
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multiplets and has |T,| =T, |Uy|=U and |V,|=V. We thus obtain
C, ) =TT+ + UU+1)+ V(V+1) = ¥ T*+ U*+V?)

=3I+ 10+ + A+ 30+ )}

=H{A -} +A+p+u. (B.18)
This result is a complicated second-degree polynomial in A and p.
It is therefore more convenient to use A and u as labels to specify
an SU; multiplet since these take on simple integral values rather
than the complicated set of eigenvalues of the Casimir operator
(B.18). Note that the eigenvalues (B.18) have the property of being
either an integer or a third integer depending upon whether or not
1(A—p) is an integer. This supports our previous classification of

multiplets according to the occurrence of integral or third-integral
eigenvalues for N.



APPENDIX C

EXPERIMENTAL PREDICTIONS FROM THE OCTET
MODEL OF UNITARY SYMMETRY

We shall now examine in detail with examples the experimental
predictions outlined in § 3.6 which can be made on the basis of the
octet model of SU;. Predictions of type A and B follow from the
assumption that the interactions between strongly interacting par-
ticles are invariant to a good approximation under the transforma-
tions of the group SU, with the octet classification for the particles.
Predictions of type C follow from the assumption that the symme-
try-breaking interactions transform in a particular way under SU;.

A. Predictions following from the multiplet structure

1. Classification. All particles and resonances must fit into SU,4
multiplets. Thus when only the = and K pseudoscalar mesons were
known, SU, predicted the existence of the # to complete the octet.
The eight baryons (N, X, 4, £) just fit into an octet and the nine
vector meson resonances just fit into an octet and a singlet. The
physical ¢- and w-mesons both have (T'=0, Y=0) and are mixtures
of the unitary singlet and octet. This mixing is apparently due to
the symmetry-breaking part of the strong interaction. The linear
combinations of the physical ¢- and w-mesons which belong to the
singlet and octet are denoted by w, and wg. A mixing parameter A
is defined by the relations:

|w{> =cos Aw) + sin A|p) , (C.1a)

|wg> = —sin A|w) + cos A|p) . (C.1b)

The vector meson octet thus includes (K*, g, wg) and the singlet
127
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just the w,. The cause and nature of the w—¢ mixing is not discussed
further in this treatment.

The p; meson-baryon resonances N*(7'=3,Y=1), Y*(T'=1,Y=0)
and E¥(T'=1, Y= —1) suggested a (3,0) decuplet with the prediction
of the existence of the Q7 (7'=0, Y= —2). The first three resonances
could also have been fitted into a 27-dimensional (2,2) multiplet
with other predictions; namely two T'=1 triplets at Y= 42, an
additional T=% doublet at Y=1 and a T=3 quartet at Y= —1,
and a T=0singlet and a 7=2 quintet at Y =0. Before the discovery
of the Q~, the decuplet (3,0) classification was already indicated by
the experimental absence of any K-nucleon resonance which would
be necessary for the Y= +2 state in the 27.

2. Couplings. All resonances must be classified in multiplets which
can arise in the coupling of the constituents. Thus all meson-baryon
resonances must fit into the multiplets arising in the coupling of
two (1,1) octets, namely the (0,0) singlet, the (1,1) octet, the (3,0)
and (0,3) decuplets and the 27-dimensional (2,2). From this it
follows immediately that the p; meson-baryon resonances discussed
above can only be placed into (3,0) or (2,2) multiplets, as these are
the only multiplets containing a T=3 state which can be obtained
by the coupling of two octets.

Any new baryon-meson or meson—-meson resonances must also
be classified in the same way. Thus any (7'=1, Y=0) resonance
must belong either to an octet, a decuplet or a 27;a (T'=%, Y= +1)
to an octet, decuplet or 27, and a (T=%, Y= +1) to a decuplet or
27. A Y= +2 resonance must belong to a decuplet if it has T=0,
or to a 27 if it has T'=1.

B. Relations between matrix elements

These predictions all follow from the Wigner—Eckart theorem, using
the generalized Clebsch-Gordan coefficients for the group SU;. We
shall use the SU, subgroups of isospin and U-spin in order to ob-
tain these results with ordinary angular momentum coupling alge-
bra, i.e. we shall require conservation of isospin and U-spin.

1. Decay widths. The decay of any resonance into two particles is
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related to corresponding decays of resonances in the same SU,
multiplet. The relations involve a single coupling, that of the two
multiplets of the final state to make a multiplet like that of the initial
state. In general, all decays are proportional to one another, with
coefficients which are SU; coupling coefficients. There are exceptio-
nal cases in which there is more than one possible coupling. The
only one of practical interest for elementary particles is the coupling
of two octets to make an octet. This arises in the decay of meson-
baryon resonances belonging to an octet. In such cases there are
two independent ‘reduced matrix elements’ instead of only one.
In meson-meson resonances this does not occur, because of the
requirement of charge conjugation invariance, as has been discussed
in section 3.4.

We first consider the decay of a baryon resonance in the (3,0)
decuplet (N*, Y*, £*, Q7) into a baryon and a pseudoscalar meson,
the latter being bothin (1, 1) octets. If the interaction giving rise to this
decay is invariant under SU; all the matrix elements are expressible
in terms of a single parameter. The relations between the different
decays would be given by generalized Clebsch-Gordan coefficients
involving the coupling of two octets to make a decuplet. We can
however obtain all these results from U-spin and isospin conserva-
tion and ordinary angular momentum Clebsch-Gordan coefficients.
We shall evaluate matrix elements for all possible decays which con-
serve isospin and strangeness, without regard for the physical masses
of the particles. We therefore also consider decays such as (N*|2K )
which are impossible in practice because of energy conservation and
mass differences. (Such matrix elements may still be of physical
interest as describing virtual transitions or vertices in Feynman
diagrams with some particles off the mass shell.) Since all the masses
of the particles in a given multiplet would be the same under pure
SU, invariance, the effects of mass differences on the decays must
be introduced separately on the basis of dynamical considerations
extraneous to SUj;, such as differences in phase space and barrier
penetration factors.

We consider first the decay of the negatively charged baryon
resonances (N*~, Y*~, ¥~ and Q7) into a negative baryon
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(£, E7) and a neutral meson (K, n°, 5, K°). The negative excited
baryon resonances in the decuplet form a U-spin quartet with
U=3. The negative baryons form a U-spin doublet with U=1.
The neutral mesons form a triplet and a singlet with U=1 and
U=0 respectively. We see immediately that the U-spin singlet
meson cannot contribute to this decay since one cannot couple a
U-spin singlet to a U-spin doublet to get U=3. Thus only the
particular linear combination of 7° and # which has U=1 contri-
butes to this decay. We can therefore write the transition matrix
element for all of these decays of a negative baryon resonance to
a negative baryon and a neutral pseudoscalar meson in terms of a
single amplitude 4 with coefficients involving the coupling of a
spin 1 and a spin 1 to obtain a spin 3. The results are:

(N*7|Z2°K% = (31 1 13 P4, (C22)
Y*7|E7K% = (31-%1 13 D4, (C.2b)
Y*T|27 2% = 331 % 03 P4, (C.20)
Y*7|Z7 ) =1)/331 1 03 D4, (C.2d)
127K = (@l 1-13-D4, (C.2¢)
F*IET 2% = 331-% 03 -4, (C.2f)
(B*21E7 7y =4/331-% 03 -H4, (C-29)
Q" 1EKD = (G1-3-15-94 (C.2h)

A similar analysis can be made for the decay of the negative
baryon resonances into a neutral baryon and a negative meson.
Here again there is a single amplitude which we can call Band the
Clebsch—~Gordan coefficients again involve the coupling of a spin %
and a spin 1 to get a total spin of 3. However, in this case it is the
neutral baryon which has the U-spin 1 and the negative meson
which has the U-spin 1.

(N*7|=~ n)= (1 % 13 3B, (C.39)
KY*7IK™ np=  (G1-% 1§ DB, (C.3b)
Y*7In~ 2% = 3G1 %+ OB DB, (C.30

Y* "o~ 4> =4)331 % 03 DB, (C.3d)
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(B*7|n” B% = (1 $-13-DB, (C.3¢)
E*TIKT2% = 1(31-% O03-1)B, (C.3f)
E*TIKT A =4/331-1 03 -DHB, (C3g)

Q7 K7E8% = (1-4-13-)B. (C.3h)

The amplitudes 4 and B are not independent but are related by
isospin considerations. The simplest way to obtain this relation is
from the Q~ which has T=0 and goes to the opposite members of
two isospin doublets, namely |[K~ Z°> and [K°Z ™). Since the linear
combination |[K~Z°—|K°Z~) has T=0, we obtain 4= —B. The
same result is obtained from the {Y*~ |2~ 7°) and <Y*"|Z%°z~)
amplitudes which go through a single isospin channel with 7'=1.

The decays for the other charge states of the baryon resonances
are simply related to the above decays by isospin considerations.

We next consider the decay of a vector meson in the (1, 1) octet
into two pseudoscalar mesons in (1,1) octets. If the interaction
giving rise to this decay is invariant under SU; all the matrix ele-
ments are not necessarily expressible in terms of a single parameter
because there are two ways to couple two octets to make an octet.
However, the requirement of invariance either under space inversion
or charge conjugation is sufficient to eliminate the symmetric
coupling. The two pseudoscalar mesons must be in a state of odd
parity if parity is conserved in the decay of the vector meson. An
odd parity state of two spinless particles is also odd under permuta-
tion of the two particles. The generalized Pauli principle for bosons
therefore requires them to be in an SU; multiplet which is anti-
symmetric under the permutation of the two octets. The symmetric
coupling is therefore excluded. The same result follows from charge
conjugation invariance by noting that the ¢° and w4 are odd under
charge conjugation and decay into two pseudoscalar mesons which
are charge conjugates of one another. Charge conjugation in the
final state is thus equivalent to permutation of the two particles and
the state must be odd under this operation.

Since only the antisymmetric octet coupling is allowed, all the
decay matrix elements are again expressible in terms of a single
parameter. The relations between the different decays are again
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obtainable from U-spin and isospin conservation using ordinary
angular momentum Clebsch-Gordan coefficients with the additional
requirements of parity conservation.

Consider first the decay of a neutral vector meson into two charged
pseudoscalar mesons. The K*°, the K*°, and the linear combination
{30° +%]/3w8} form a U-spin triplet with U=1. The charged =- and
K-mesons form two U-spin doublets. We thus obtain
({20’ +3/306} K" K™ 1 ({30’ +3)/3wg}ln* n7) :KK* K"z ™)

=(343—-310): (33 -33110): (333311 (C4H)
We now note that since the two pions are spinless bosons in the
same isospin multiplet, they can be in an antisymmetric spatial
state only if they are antisymmetric in isospin, i.e., only if they
have T=1. To make a vector meson with odd parity, the two

pions must be in an antisymmetric state. They therefore have T'=1.
A T=0 vector meson therefore cannot decay into two pions. Thus

(oglntn~> =0. (C.5)

This result can also be obtained directly from conservation of G-
parity. Discarding the term describing the decay of the wg into two
pions leaves

CK*K*n™) =3/2In* ), (C.6a)
4e° +3/30gK*K™) = =% = 7). (C.6b)
The first of these relations allows us to predict the ratio of the width
of the K*° to the width of the o. To do this we need to introduce

the neutral decay mode of the K*® which is related to the charged
mode by isospin coupling. This relation is

K*O|K%7° 11-4 o3 -1 1 .
= G =~ €T
KKK 7n™) 31 1-13-9
Thus
(K*¥K7%) = —4<%n* n7) (C.7v)
and

IKK*IK* n7))* + KK* K 7))
Ke’ln* ™))

=1+1=%. (CT0)
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To obtain the ratio of the K*- and p-widths, the factor $ must be
multiplied by phase space factors to include the effect of the differ-
ent momenta of the two final states. The result is in reasonable
agreement with the experimental value of this ratio, which is about 1.
Let us now consider the decay of neutral vector mesons into K°
and K° The neutral K-mesons are members of the same U=1
multiplet and must again be in the space-antisymmetric p-state.
By an argument directly analogous to the isospin argument em-
ployed above for the two-pion system, we see that the K°K°
system in an antisymmetric p-state must also be antisymmetric in
U-spin and must have U=1. Thus only the U=1 linear combination
10°+1)/3 wg is coupled to the K°K® system and we obtain

Ce"IK°K® = 4)/3<ws[ KK . (C8)
This result can also be expressed in terms of the charged-K mode as
CIKFK™Y = —33wsK* K™Y, (C.9)

where the negative sign comes from isospin coupling of $+3 to 1 on
the left-hand side and to zero on the right. Then by substituting eq.
(C.9) into eq. (C.6b) we can relate the ¢p-decay to the p-decay through
the expression

(wgl K K™) = —4)/3¢e°n* n7) . (C.10)

These results expressed in terms of the wg are easily expressed in
terms of the physical ¢ and w vector mesons by noting that only the
wg linear combination of the physical ¢ and w can contribute to
this decay. The unitary singlet has U=0 and is not coupled to the
K%K?° system which has U=1. Thus

(PIK*K™> = —4)3cos i{’In*n"), (C.11a)

C@°IKTK™>:{@[K*K™) :{w|K*K™) = B
=1:-)3cosd:})/3sini. (C.11b)
Eq. (C.11a) relates the width of the ¢ to the width of the g. Eq.

(C.11b) can be interpreted as giving the ratio of the production
matrix elements for ¢°, ¢ and w production by a KK-vertex. For
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example, in K™ p reactions which go via one-K exchange, the ratio

is

(K™ p|@® 4D : (K™ plwAd : (K™ plpAd> =1 :V§ sin /1:—]/3 cos 4.
(C.12)

2. Relations between cross sections. We first consider the produc-

tion of a baryon resonance in the (3,0) decuplet together with a
pseudoscalar meson in a meson—baryon reaction

M + B - M + B*

% w 1,1 1y 1D (3,0)

Combined (4, p) (0,0), (1,1), (1,1) (1,1), (2,2), (3,0), (4,1)
(2,2), (3,0), (0,3) : (C.13)

The meson and baryon in the initial state are both in (1,1) octets
and these can be coupled to any of the six possible multiplets arising
in the coupling of two octets. The meson in the final state is also in
a (1,1) octet and can be coupled with the baryon resonance to any
of the four multiplets arising in the coupling of a (1,1) octet with a
(3,0) decuplet. If the interaction giving rise to this reaction is in-
variant under SU; each multiplet which is common to both sides
of the reaction can define a channel through which the reaction
can occur. We see that the (1,1), (2,2) and the (3,0) multiplets are
all possible. Since there are two independent (1,1) octets in the
initial state there are two independent octet channels. The total
number of independent channels is therefore four and all reactions
of this type are therefore expressible in terms of four independent
complex amplitudes. These are obtainable directly using the appro-
priate generalized Clebsch-Gordan coefficients for these couplings.

All the relations obtainable with SU; couplings are obtainable
using U-spin and isospin conservation as in the previous examples.
In this case there is an additional advantage to the use of U-spin.
Relations between different reaction cross sections involving four
independent complex amplitudes (i.e. seven independent real param-
eters) are not generally very useful. One would like to find several
reactions expressible in terms of only a single parameter as in the
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decay widths above, or in terms of a comparatively small number of
parameters. Using the SU; couplings there is no easy way to find
such simple relations. One simply has to evaluate the transition
amplitudes for all reactions in terms of the four channel amplitudes
and then look for those which happen to be proportional to the same
linear combinations of channel amplitudes. Using U-spin it is
possible to find almost immediately certain reactions which are
simply related. One can also restrict attention to those reactions
which are of practical interest; i.e. which require nucleon rather
than hyperon targets for the initial state.

Consider the four reactions in which a negative meson incident
on a.proton produces a positive meson and a negatively charged
baryon resonance.

n4+p - KV 4+Y[,
n4+p — T +N*T,
K +p - K" +&2*7,
K +p - nt+Y/[".
Ui 4 4 4 3,

| e

Uitar: O or1 1or2.

The n~ and K™ belong to the same U-spin doublet with U=1. The
proton is a member of a U-spin doublet with U=4. There are thus
two possible U-spin states for the left-hand side of these reactions,
namely U=0 and U=1. The K* and n* are members of the same
U-spin doublet with U=4%. The Y*~, N*~ and £*~ are all members
of a U-spin quartet with U=4%. The possible U-spin states obtained
from coupling U=4 with U=3 are U=1 and U=2. If U-spin is
conserved in these reactions, there is thus only one possible U-spin
channel that is common to both sides of the reactions, namely U=1.
The amplitudes for these four reactions are therefore all expressed in
terms of a single parameter, the amplitude for the U=1 channel.
The coefficients are products of two Clebsch-Gordan coefficients,
one for each side of a reaction. The coefficient for the left-hand side
describes the coupling of two spins of 4 to a total spin 1; the one for
the right-hand side describes the coupling of a spin of 4 and a spin
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of % to a total spin 1. These amplitudes are

(n” pKTYTT>=0(4% 33H1DG3 + HlDa=—1q,
(n”pln*t N*">=@3% 33H1DG3-% 3H1Da;=14)/3a,
(K™pK"E*")= (33 -34110)33 %-310)a;= —1a,,
K7pln*™ Y* >=(34-3310)33 -3 310a = 1q.

We next consider the production in proton-antiproton annihila-
tion of a baryon resonance in the (3,0) decuplet together with its
corresponding antiparticle in the (0,3) decuplet. Here again, exami-
nation of the SUj; couplings shows four independent channels.
Using U-spin, one finds sets of relations involving only two channels
since the proton and antiproton are both in U-spin doublets having

=4 and can couple only to a total U of 1 or 0.

Consider the production of negatively charged baryon resonances
and their corresponding positively charged antiparticles.

(C.19)

p+p— N*" 4+ N*~ |
p+p—-Y*¥ +Y*,

p+p—>E*T +E%,

p+p—0Q° +Q° .
v 333 3,

N’ N——
Uiw: Oorl 0,1,20r3.

The proton and antiproton are both in U-spin doublets having
U =14. The reactions above therefore go through two U-spin channels
(U=0 and U=1) and are expressed in terms of two independent
complex amplitudes. Letting a, and a, be the amplitudes for the
U=0 and U=1 channels, we can write

(PPIN*"N*7) = —y3(33
@EpIY*” Y*7) = —y1G
(pplE*~ :*_—) = -l/z(
(pplQ@~ Q7)) = —1G 300)ao + Y333 —% 310)a,,

where the factors = y% come from coupling (pp) to U=1and U=0.

When the numerical values for the Clebsch-Gordan coefficients
are inserted, these become

3 3
2 2

- J2L|00)ao +v/33G3 1-310)a,,
-3 3

-3

N N{u
N|bl N]u N](»
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VZ(_};plN*-N*_) = —%ao"“i%th >
V20pIY*™ Y*7) = +4a0— 57541 »
J2(ppl=*~ E¥7)
2pIQ" Q7)) = +3ao+ 554y -
These four relations involve three parameters: the magnitudes of
the amplitudes a, and a, and the relative phase. Eliminating these
three parameters between the four equations gives a relation between
the cross sections which can be written as an expression for the
(27, Q7) production cross sections expressed in terms of the other
three, namely
o(Q Q) =o(N* " N* ) 4+ 3{c(E*"E* ) —a(Y* Y* )}. (C.17)
This is the only relation between these cross sections which is ex-
pressible as an equality. However, it is also possible to obtain rela-
tions expressible as inequalities. Such inequalities were of particular
interest for 2~ production processes since they can be expressed as
a lower limit on the production cross section for reactions which
have not yet been observed.
The amplitude for Q~ production can be expressed in terms of
the amplitude for any two of the other three processes (1), by eli-
minating a4 and a,.

(pPIQ™Q7) = 2(ppIN*"N*7) + 3(pp|Y*"Y*"), (C.18a)
= 4(ppIN*~ N¥7)— 3(pplZ*~ E*7), (C.18b)
= —(Pp|Y*” Y*7) —2(pp|E* " E*¥). (C.I8c)

(C.16)

1 1
—200—575% »

Using the triangular inequality we obtain lower limits for the
magnitude of the Q~ production matrix element.

[Ppl2™Q7)| > [2AEPIN*"NF)| =3IEpIY* Y* )| (C.19%)
> [HEPIN*~N¥)| —3I@pla*~ E5)l|  (C.19b)
> IplY*™ Y*O)| =2I(pplE*~ ¥ (C.19)

3. Selection rules. We consider first the decay of a vector meson
which is a (0,0) singlet into two pseudoscalar mesons in (1,1) octets.
We have already seen that parity conservation requires that the two
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pseudoscalar mesons produced be in an odd-parity state and
therefore in an SU; multiplet which is antisymmetric under permu-
tation of the two octets. Since the (0,0) singlet is symmetric, the
decay of a singlet vector meson into two pseudoscalar mesons is
forbidden by SU;. The same selection rule is obtainable using U-
spin and isospin. A (0,0) singlet vector meson is a pure singlet in
both isospin and U-spin having T'=U=0. However, an odd-parity
state of two pions must be antisymmetric in isospin and have T=1.
The K° and K° both belong to the same U-spin triplet and the gener-
alized Pauli principle for U-spin requires that an odd-parity state be
antisymmetric in U-spin; i.e. have U=1. The 2rx and 2K decay
modes are thus forbidden by isospin and U-spin conservation re-
spectively. A simple generalization of this selection rule states that
any boson of odd parity which is either in a (0,0) singlet or the
27-dimensional (2,2) multiplet cannot decay into two pseudoscalar
mesons in (1,1) octets. Similarly, a boson of even parity which is in
a (3,0) or (0,3) decuplet cannot decay into two (1,1) pseudoscalar
mesons. Two pseudoscalar mesons in a symmetric (0,0) or (2,2)
state must have even parity while if they are in the antisymmetric
(3,0) or (0,3) state they must have odd parity.

C. The symmetry-breaking interactions

Unitary symmetry is broken by at least the following two interac-
tions (i) the electromagnetic interaction and (ii) the part of the
strong interaction which produces the mass splittings within the
SU,; multiplets. Experimental predictions for processes involving
the symmetry-breaking interactions can be made using the trans-
formation properties of these interactions under SU;. These are
conveniently expressed in terms of isospin and U-spin. Since iso-
spin is known experimentally to be conserved in strong interactions,
the part of the strong interaction which breaks SU; symmetry must
still conserve isospin. The electromagnetic interaction, on the other
hand, conserves U-spin. This can be scen as follows: The U-spin
operators U, and U_ change the strangeness of a particle but not
its electric charge. U-spin multiplets thus consist of particles all
having the same coupling to the electromagnetic field. The electro-
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magnetic interaction therefore conserves U-spin rigorously to all
orders and the photon can be considered to be a particle ot zero
U-spin. The addition of strong interactions produces anomalous
magnetic moments and affects the coupling of particles to the elec-
tromagnetic field. However, if strong interactions are invariant
under SUj;, they also conserve U-spin. Thus U-spin is conserved in
any combination of electromagnetic interactions and strong inter-
actions invariant under SUj;.

The electromagnetic interaction which conserves U-spin does not
conserve isospin and the mass-splitting interaction which conserves
isospin does not conserve U-spin. If either interaction conserved
both isospin and U-spin it would be invariant under SU; and would
not break the symmetry. Let us now specify more precisely the
isospin transformation properties of the electromagnetic interaction
and the U-spin transformation properties of the mass-splitting
interaction. The electromagnetic interaction is a linear combination
of an isoscalar and an isovector. The mass-splitting interaction is
assumed to be a linear combination of a U-spin scalar and a U-spin
vector. These transformation properties aresummarizedin Table C.1.

TABLE C.1

Transformation properties of several interactions
S = scalar; V = vector

Interaction Isospin U-spin
Invariant under SU3 S (conserved) S (conserved)
Electromagnetic S+V S (conserved)
M S (conserved) S+V

The linear combinations of scalar and vector can be specified
more precisely. The electromagnetic interaction transforms like the
electric charge operator Q which is a member of a (1,1) octet. The
mass-splitting interaction transforms like the hypercharge operator
Y which is also a member of a (1,1) octet. That these interactions
transform like members of an octet is also expressible in terms of
isospin and U-spin. Using the octet transformation coefficients
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(B.11) and (B.12) the electromagnetic interaction is a U-spin scalar
which is a linear combination of an isoscalar and an isovector. The
isoscalar and isovector parts are each linear combinations of a
U-spin scalar and a U-spin vector, and the isospin and U-spin
scalars and vectors are related by the octet transformation coeffi-
cients. Thus if we let U,, U,, I, and I, represent U-spin scalars and
vectors we have

E=U,=431, -3%I,, (C.20a)
U= 3, +3)31, , (C.20b)
M= I;=%/3U, -31U,, (C.21a)
I,= 13U, +3)/3U.. : (C.21b)

These relations are the same as the ones defining those particular
linear combinations of the isoscalar A and the isovector Z° which
are a U-spin scalar and a U-spin vector.

There are two types of predictions of experimental properties
which can be made for each symmetry-breaking interaction: (1)
those following from the conserved spin, and (2) those following
from the specific transformation property under the non-conserved
spin. Results following from U-spin conservation in electromag-
netic interactions are valid to all orders in the electromagnetic inter-
action and in the strong interactions invariant under SU;. Results
following from the specific transformation property of the electro-
magneticinteraction (C.20) are valid to all orders in strong interacti-
ons invariant under SU3 but each order in the electromagneticinter-
action must be considered separately. Results following from iso-
spin conservation are good all to orders in the strong interactions
including both those invariant under SU; and the mass-splitting
interaction. Results following from the specific transformation
property of the mass-splitting interaction (C.21) under U-spin are
good to all orders in the interactions invariant under SU; but must
be considered separately for each order in the mass-splitting inter-
action. Relations following from isospin conservation are valid
independently of SU; and are well known. These will not be con-
sidered further. Let us now consider some examples of the other
three types of experimental predictions.
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1. Relations following from U-spin conservation in electromagnetic
interactions

a) Electromagnetic decays of the n and n°. Since photons have
U=0, only a U=0 state can decay into two photons. The linear
combination [%n°+%]/§n> is a pure U-spin triplet. Thus U-spin
conservation requires the vanishing of the transition matrix element
n® +13}/3n|2y> =0. This can be expressed as a relation between the
transition matrix elements for the n°- and n-decays
<n12y) = —)/3ni2y)> . (C.22)

b) Electromagnetic decays of the N*, Y*, and Z*. The Y;~ and
Z*~ belongtoa U=$ quartet, while the Y+ and N** belong to a
U=} doublet. The 7, £, £* and p all have U=4. Thus we find
that the electromagnetic decays of the Y*~ and £*~ are forbidden
but the decays of the Y** and N** are allowed and have equal
amplitudes, i.e.,

Forbidden: {(Y{7|¥79) and <(E*7|Z7p)

Allowed:  Y{F|Z%y) = (N*py).

The N*°, 2% and Y*° belong to the same U=1 triplet and can
decay electromagnetically to the corresponding members of the
U=1 baryon triplet consisting of the n, the =° and the linear
combination $X°+14}/3 4. Thus
(N™npy = (E*E%) = 2(Y*0[2%) = 3/3Y ™ lp> . (C.23)

¢) Photoproduction of N* and Y*. Consider the two reactions:

p4+p > N*O gt
y+p—> Y*¥+K*,

U: 0+ 1 %,
Uoar: 3 for3.

The (y, p) system is a U-spin eigenstate with U =14 since the photon
has U=0 and the proton has U=1. The N*° and the Y*° are mem-
bers of a U=1 ftriplet. The n* and K* are members of a U=1
doublet. If U-spin is conserved in these reactions, there is only one
possible U-spin channel, namely U=1. The branching ratio for the
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two reactions thus depends only on the Clebsch-Gordan coefficients
describing the coupling of a spin 1 and a spin  to a total spin . It is

PIN*m*) (13113 _
GPIY* K'Y (130 4139

d) Meson photoproduction. Consider the reactions

-V3. (C.24)

y+p—> n +7n*,
y+p—> 4 +K7,
y+p—-> 2° +K*,

U: 0 L 1lor0 R
Z
~—— S —
Uotar: 3 3 or 3.

Here again, the left-hand side has U=1 and is a pure U-spin eigen-
state. The situation on the right-hand side of these reactions is more
complicated because the A and Z° are not U-spin eigenstates but are
mixtures of U=0 and U=1. These particles can combine in two
ways to make a U=1 state. Either the U=0 or the U=1 component
of the 4 and 2° can be coupled to the U=4% meson to obtain a total
U-spin of 1. There are therefore two independent complex amplitu-
des describing these three reactions. The existence of two complex
amplitudes implies three real parameters: two magnitudes and one
relative phase. Since there are only three cross sections, one cannot
relate these cross sections by an equality. However, the relation
between the amplitudes for the three reactions can be obtained and
leads to inequalities relating the cross sections. These relations are ob-
tained most easily by noting that the linear combination 12+ %1/§A
is a U-spin eigenstate and belongs to the same U=1 triplet as
the neutron. The amplitudes for the photoproduction of this parti-
cular linear combination and for neutron production thus are re-
lated by the Clebsch-Gordan coefficient describing the coupling of a
spin 1 withaspin}toatotal spin . The ratio of amplitudesthereforeis

{yplnz” > _
<ypl{3Z°+4)/34}K ™)

—y2 (C.25)

so that
(ypInnty = —5/2(yp|Z°K*> — 3)/6<yplAK*> . (C.26)
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This relation between amplitudes is not a relation between cross
sections because the relative phase of the 2° and A production am-
plitudes is unknown. However, it follows that the absolute values of
the transition matrix elements are related by the inequalities

|[<rpinz ™ < 3Y2|KyplZ°K*)| + 4/6[<yplAK D[, (C.27a)
[<pinz* Y] > [3/21KypIZ° K * M= 3/61<yplAK*H]| . (C.27b)

e) Two-meson photoproduction. U-spin conservation is particularly
useful in considering reactions in which several particles are pro-
duced in the final state. If SU; algebra is used and all possible final
states are considered, there are many possible couplings and many
channels. Most relations obtained in this way are complicated. U-
spin provides a method of choosing the particular reactions having
simple properties; i.e. those reactions for which only one or two
couplings are allowed by U-spin conservation. Consider for exam-
ple the reactions

PP N* "+ 4 ot

y+p->Y* +K*+n*,

y+p— E* 4+ K*+K*.

v 04 3 % 4

U-spin conservation requires that the two mesons should couple to
U=1 in order that the combination may couple with the U=%
baryon resonances to a total U=1. Thus

CypIN*" 2 1 H/<ypl Y*TH/2{K* 2" +7* K* }/(ypl=* KT K*)
=G 13 -13D/G1E01ED/G1 -1[3D)

= 12 ] =13 | 16. (C.28)

The K* and n* are spinless bosons belonging to the same U-spin
doublet. The wave function for a two-particle K™ n* system must
be totally symmetric in space and U-spin. Since the U=1 state,
3/2{K*n* +n* K*} is symmetric in U-spin, it must also be space-
symmetric. The angular distribution for this reaction is therefore
symmetric under interchange of the two mesons. They must be in a
state of even orbital angular momentum and even parity with re-
spect to their center of mass.
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Similar relations follow for the production of the corresponding
vector mesons.

f) Static electromagnetic properties. Any electromagnetic operator
E is a U-spin scalar. Expectation values of such an operator in
states of the same U-spin multiplet are therefore all equal.
Consider for example the baryon octet. The proton and the =+
are members of the same U-spin doublet, and similarly for the X~
and E~. The neutron and E° are members of the same U-spin
triplet. Therefore for any electromagnetic operator E we have

(plElp) =<(ZF|E|ZT), (C.29)
CETIE|IE™) =(ET|EIE™), (C.29b)
(n|Elnd = (E°|E|E°Y . (C.29¢)

If E represents the magnetic-moment operator, then egs. (C.29)
predict that the magnetic moments of the proton and £+ are equal,
and similarly for the X~ and £~ and for the neutron and the Z°.
On the other hand if E is interpreted to be the electromagnetic mass-
splitting operator, egs. (C.29) can be combined to obtain a relation
between the mass splittings in the three isotopic multiplets, namely

my—m, = Mg+ —mMg-+mz-—mgo . (C.30)

2. Relations depending upon the specific transformation properties of
the electromagnetic interaction

a) Electromagnetic properties of the A and £°. U-spin conservation
alone is not sufficient to obtain relations between the electromag-
netic properties of the A4 and X° and the other members of the bary-
on octet, since these neutral baryons in the center of the octet are
not U-spin eigenstates but are mixtures of U=0 and U=1. Further
relations involving the electromagnetic properties of these particles
can be obtained by using the specific transformation properties
(C.20) of any electromagnetic operator under isospin and U-spin.
We first note that the expectation value of any isovector vanishes
for both the A and the 2°; i.e. in both |T=0) and in |T=1, T, =0)

states:
CAILIAY =(Z°|L,|12%) =0. (C31)
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Then, from (C.20),
CAEIA) = —¥KAlL|4), (C.32a)
(EOEIZ%) = =320 2% . (C.32b)
Substituting for I, from (C.20) into (C.32) we obtain
CAIE[AY = —3/3A|UJA>+3A|UJ4),  (C.33a)
CEUIEIE) = —3Y/3CZO|UIZ°) +3 AU, 4> . (C.33D)
But U, appearing on the right-hand side of egs. (C.33) is just equal
to E by eq. (C.20a). Thus
CAIE|4) = —3/3K4|U,|4>, (C.342)
(ZOIEIZ) = —3)/3¢20|U, |20 (C.34b)
The A and X° are both linear combinations of a state |U=0) and a
state |[U=1)
4> =13)3|U=1) —3|U=0). (C.35a)
2% =3|U=1) + §)/3|U=0) . (C.35b)
Eq. (C.34) simplifies when the A and 2° are expressed in terms of the
U-spin eigenstates, eq. (C.35), because any U-spin vector has a
vanishing diagonal matrix element in both the |[U=0) and the
|U=1, U,=0) states. The only non-vanishing matrix element of
U, is the off-diagonal element. Thus

<AlUJ4y = —3)3 ReKU=1|U,|U=0}, (C.36a)

(Z°|U,|2% = +4)/3 Re (U=1|U,|U=0).  (C.36b)
Substituting eq. (C.36) into eq. (C.34) we obtain

(A|E|AY = = {3°|EIZ°) . (C.37)

If E is the magnetic moment operator we find that the magnetic

moments of the A and X° are equal and opposite. On the other

hand, we can also calculate the expectation value of E in the states
(C.35) using the fact that E is a U-spin scalar

CA|EIAY =3 U=1|U,|U=1) + K U=0|U,|U=0), (C.38a)

(OEEYy = KU=1|U,|U=1) + 3U=0|U,|U=0) . (C.38b)
The sum of the two equations (C.38) must vanish by eq. (C.37).
Thus

U=1|U|U=1) = =(U=0|U,|U=0) =2{A|E|A>. (C.39)
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Since the neutron is in the same U-spin triplet as the U=1 linear
combination of the A and X°,

(n|En) ={U=1|U|U=1) = 2{A|E|A) = —2(Z°|E|Z%) . (C.40)
Thus if E is the magnetic moment operator, the magnetic moment

of the neutron is equal to twice the magnetic moment of the A. The
{A|E|X) transition matrix element can also be obtained

(AIE[EY =§)/3¢U=1|U|U=1) — }J/3¢U=0|U,|U=0) (C.41)
=)/3CA|E|A) .

b) Electromagnetic decays of vector mesons (An interesting exercise
in symmetries). Okubo has given the following relations between
the decays of a vector meson into a pseudoscalar meson and a
photon, assuming invariance of strong interactions under the
transformations of SU; and under charge conjugation
@t In"y> = (%In%y) =<K**[K*¥ p) = —{wglny)

=1)/3<wg|ny) = 3)/3{golny> = K *[K%) . (C.42)
These relations are valid to first order in the electromagnetic inter-
action, to all orders in strong interactions invariant under SU;, and
do not take into account the part of the strong interaction which
breaks unitary symmetry.

A detailed derivation of Okubo’s relation using isospin and U-
spin as well as charge conjugation is instructive because it illustrates
the interplay of the three symmetries. One finds that Okubo’s rela-
tion is actually a combination of several groups of relations, each
having a wider range of validity than the combined relation (C.42).

The following properties of the symmetry-breaking interactions
(Table C.1) are relevant here:

(1) The symmetry-breaking part of the strong interactions conserves
isospin; it does not conserve U-spin.

(2) The electromagnetic interaction conserves U-spin; it does not
conserve isospin.

(3) The electromagnetic interaction consists of an isoscalar and
an isovector part. Selection rules imposed by U-spin conservation
are good to all orders in the electromagnetic interaction. Selection
rules following from isospin transformation properties must be
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defined specifically for each order in the electromagnetic interaction.
(4) The electromagnetic interaction transforms under SUj; like
the member of the octet representation, which is a U-spin scalar.
This is expressed in terms of isospin and U-spin by the relations
(C.28). Again, relations requiring only that the electromagnetic in-
teraction be a U-spin scalar are valid to all orders in the electro-
magnetic interaction while those using the explicit transformation
properties (C.20) must be considered separately for each order.

Using these properties, three sets of relations can be obtained

which, when combined, lead to Okubo’s result (C.42).
(1) Relations following from isospin and charge conjugation.
Because of the mixed isospin of the photon, simple relations do not
follow easily from isospin conservation alone. The combination of
isospin and charge conjugation is conveniently expressed by de-
fining a G-parity for the photon. Since it is odd under charge con-
jugation, it follows that the isoscalar part has negative G-parity
and the isovector part has positive G-parity. Thus, if all the strongly
interacting particles participating in a given electromagnetic reac-
tion have a definite G-parity, conservation of G-parity eliminates
either the isoscalar or the isovector part of the photon and isospin
conservation can then be used in the conventional manner.

The g-meson has positive G-parity; the = has negative G-parity.
G-conservation then requires negative G-parity for the photon
emitted in the decay of a g-meson into a = and a photon; i.e. only
the isoscalar part contributes. The photon in these decays can there-
fore be considered as a scalar under isospin. Thus

et nty)> =<%n%y> =<e 7 In7 y) . (C.43)

This result is valid to all orders in all strong interactions conserving
isospin (including the part of the strong interaction which breaks
unitary symmetry) but is valid only to first order in the electromagnetic
interaction.

One second-order electromagnetic process would be the emis-
sion of two photons. Here again a negative G-parity is required for
the two-photon system and can be obtained only by taking the
isoscalar part of one photon and the isovector part of the other.
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This leads to a unique isospin transformation property for the two-
photon system, namely pure isovector. Isospin conservation then
leads to the relations

Ce*In*2y) = =<7 In" 2, (C.44a)

°m°2yy =0. (C.44Db)
Inspection of the relations (C.44) shows that these follow from
charge conjugation alone and are independent of isospin conserva-
tion. Only the first-order relation (C.43) gives an additional restric-
tion imposed by isospin conservation over that obtained from charge
conjugation alone, namely the relation between the neutral decay
to the charged decay. Isospin conservation becomes completely
useless in higher-order processes since G-parity always allows sever-
al values for the isospin of the photon system and these constitute
independent isospin channels.

(2) Relations following from U-spin conservation.
Since the photon is a scalar under U-spin transformations, it
follows immediately from U-spin conservation that

e*lmn* nyy =<K*"|K" ny), (C.452)
{e7In" ny> =<K*7|K" ny, (C.45b)
(K*OK® ny) = (<K*O[K° ny> . (C.45¢)

These relations are valid for the emission of any number n of photons
to all orders in the electromagnetic interaction and in strong inter-
actions invariant under SU,. They do not take into account the
syinmetry-breaking part of the strong interaction, which is not in-
variant under SU,. Further relations of this type are also obtainable
for the neutral members of the meson octets. These are obtained
simply by expressing these neutral mesons in terms of U-spin eigen-
states. Let V,, V,. P, and P, represent vector and pseudoscalar
mesons with U-spin eigenvalues of 1 and 0, respectively. Then

= IV, +Y57,, (C.46a)
n® = 1P, +3)/3P,, (C.46b)
ws =33V, -1V, (C.46¢)

n =3)/3P, —1P,. (C.46d)
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Since U-spin conservation forbids transitions between states of U-
spin 1 and states of U-spin 0,

(K*|K® nyy = (V4 |Py nyy = CK*O K my) (C47a)
lnnyy  =313{V1|Piny) =<V, Ponyd} = {wg|n°ny),(C.47b)
°Im°ny> = HKViP nyy+3KVolPony) (C.47¢)
Cwglnnyy  =3V1|Pyny)+i{V,lPony) . (C.47d)

Combining eqs. (C.47) gives

<@°ln ny) =< wsln® ny> = —3)/3{<°In° ny) —<wsln ny>}, (C.48a)
<@°Im® nyy + Cwsln ny) +4)/3<e°In ny) = 2¢(K*°[K°ny>,  (C.48b)
where again the relations hold for any arbitrary number n of
photons since photons are U-spin scalars and can carry no U-spin

The result (C.48) is also good to all orders in the electromagnetic
interaction and in strong interactions invariant under SUS,.

(3) Relations requiring the specific transformation property of the
photon under SUj;.
The relations (C.43), (C.45) and (C.48) are still insufficient to
give Okubo’s relation (C.42). One additional relation is required
which is based upon both isospin and U-spin transformation pro-
perties for the photon. Using egs. (C.20) and isospin conservation
we have for a first-order electromagnetic process
COIEIR®Y = —3{°IL|n%) = —31/3<e°| U,|n°) +3<°IUIn®) ,  (C.492)
wg|Elny = =3 wslLIn) = —1)/3<ws|U,In) +3{ws|Uln>,  (C.49b)
since the isovector contribution to this matrix element vanishes.
Since from eq. (C.20) E=U;,
(Q°lEIn®) = —4/3(°1U,In%) , (C.50a)
(wslElny = —4}/3¢ws|Uiln) . (C.50b)
Substituting the U-spin eigenstates (C.46)
CQ°IEIn®y = —{{{V1|U,|Po) +<P1|U,|Po>} = —<wslElny  (C.51)
or
°In°y) = —wglny - (C.52)
Eq. (C.52) is valid only to first order in the electromagnetic interac-
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tion, to all orders in strong interactions invariant under SU;, and
neglects the symmetry-breaking part of the strong interactions.
Combining egs. (C.43), (C.45), (C.48) and (C.52) leads to Okubo’s
relation (C.42). The validity of the relation (C.42) is limited by the
conditions of validity of eq. (C.52) which are the most stringent.

3. The mass-splitting interaction

An outstanding success of the octet model of unitary symmetry has
been the prediction of the mass splittings within SU; multiplets.
It is assumed that these mass splittings are obtained by taking the
expectation value of an operator having the transformation pro-
perties (C.21a). The proof of the pudding thus far seems to be in the
eating; namely in the remarkable agreement between experiment
and calculated predictions. The procedure is apparently one of using
first-order degenerate perturbation theory to obtain a large effect
with no indication that higher-order corrections should be small.
There are presumably more profound reasons why such a procedure
should work. However, these have not yet been established and are
in any case beyond the scope of this treatment. We therefore con-
sider only the problem of how the mass splittings can be calculated
once this assumption is accepted. These are easily obtained using
the isospin and U-spin transformation properties of the mass-
splitting interaction (C.21). The results are assumed to give the
splittings of the masses directly for fermions but the splitting in the
values of the square of the mass for bosons because the mass enters
linearly in fermion propagators and quadratically in boson propa-
gators.

a) The masses of the 3* baryon resonances. Consider the U-spin
quartet of negatively charged baryons: 7, £*~, Y{~ and N*~.
These have U=% and U,= —3%, —3, +% and +3, respectively. Let
us consider the expectation value of the mass-splitting operator in
this U-spin multiplet. The U-spin scalar part of the operator has
the same expectation value for all states in the same U-spin multi-
plet and therefore does not give any mass splitting. The U-spin vector
part gives a splitting which is proportional to U, within the same U-
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spin multiplet. Thus the mass splitting of the four members of
the quartet is proportional to U, and the mass spacings are all
equal; i.e. there are four equally spaced energy levels.

b) The mass splitting in the baryon octet. Consider the neutral
members of the U-spin triplet [£°, 1(Z °+]/§A), n], which are states
with U=1 and U,= —1, 0 and +1, respectively. Here again the
expectation value of the U-spin scalar part of the mass-splitting
operator is the same for all three states. Let us denote this by S. The
expectation value of the U-spin vector part of the mass-splitting
operator is proportional to U,. If the proportionality factor is
denoted by V, the expectation value is therefore —V, Oand +V,
respectively, for the three states. We can therefore write

(EAM|E®Y =S—V, (C.53a)
=320+ 4/3AIM[-42°+ 434> =S, (C.53b)
n|Mn) =S+V, (C.53¢)

where M represents the mass-splitting operator. Since M conserves
isospin, it has no off-diagonal elements between the A and the Z°.
Eq. (C.53b) can therefore be rewritten

FEOME%Y + 3 AIM[AYy =S (C.53d)
Combining these equations leads to the result
K| Mn) +4<EME) = J<ZOIM|Z%) +3<AIM|A) . (C.54)

c) The mass splitting in the meson octet. Since the SU; couplings
are the same for any octet, the results for the pseudoscalar meson
octet are obtainable directly from the results for the baryon octet
(C.54). However, as mentioned above, the results for bosons refer
to the square of the mass rather than the mass itself, and the masses
of the K and K must be equal by charge conjugation. We thus
obtain the result

Mg = {(M:+3M;) (C.55)

where My, M, and M, are the masses of these three particles.



APPENDIX D

PHASES, A PERENNIAL HEADACHE

If one wishes to give a precise definition for the states within a
multiplet which are transformed into one another by the action of
the operators of a Lie algebra, there is a certain arbitrariness in the
choice of phases. However, once a convention is chosen confusion
and errors are avoided by using the same convention throughout a
particular calculation*. It would be desirable to choose a phase
convention** in which extra phase factors do not appear in the
basic relations. This, however, is impossible as can be seen from the
following simple example. Consider three operators 4, B and C
satisfying the following commutation relation
[4,B]=C. (D.1)
It is then evident that
[B, A]=—-C. (D.2)
A negative sign must appear in one of the two commutation rela-

tions and cannot be avoided by any redefinition of the phases.
A particular example relevant to angular momentum algebra is

Vo Jil=J4, Vi, Jl=—J,. (D.3)
In these relations the angular momentum operators J, and J, can
be interpreted in two ways. On the one hand they are the operators

of the angular momentum Lie algebra. These acting on any ele-
ment of an angular momentum multiplet give another element of

* Do not believe this sentence. There are always confusion and errors. You
have to live with them.

** The typist originally typed ‘phase confusion’ instead of phase convention.
This error is too good to lose.

152
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the multiplet. On the other hand the three angular momentum
operators can also be considered as the members of a vector or
triplet multiplet. The first of the two commutation relations (D.3)
above can be interpreted as the action of the diagonal operator J, on
J . which is the plus element of a vector multiplet. Since the oper-
ator J, is taken to be diagonal in the usual representation of angular
momentum operators the plus state is an eigenstate of J, with
eigenvalue +1 as is indicated by the equation. The second of the
two equations (D.3) can be interpreted like the first but with the roles
of the operators J, and J, reversed. We now have the operator J
as a step operator raising the eigenvalue of J, within a multiplet.
The operator J, is now considered to be the zero element of the
vector multiplet. The result of the operation is the plus element of
the multiplet, namely J,. However, a minus sign must appear in
this relation if the previous relation (D.3) has a plus sign.

One therefore has the following choice to make when defining
phase conventions. One can say that the three angular momentum
operators J,, J,, and J_ represent the components of a vector
without any additional phase factors. In that case a phase factor
must appear in relations like (D.3) expressing the operation of the
step operators. On the other hand one can also define a phase con-
vention in which all the step operator relations have a positive sign.
This is the convention adopted by Condon and Shortley, and which
is in general use. However, for this case we see that J, and J,
cannot be defined as the plus and zero elements of a vector triplet.
An extra minus sign must be introduced either in the definition of
the zero element or the definition of the plus element in order to
absorb the minus sign in the commutation relation (D.2).

The same difficulty arises in considering the components of any
vector, such as the vector r. One is tempted to take the Cartesian
coordinates x, y and z of the vector and form the natural linear com-
binations x+iy, x—iy and z. However, these transform under ro-
tations exactly like J,,J_ and J,. The same difficulty in phases
arises and a minus sign must be introduced somewhere.

This difficulty translated into isospin language has been the source
of untold confusion in field theory. It is customary to start with
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three real pion fields n;, 7,, and n;. The charged pions are then
designated by the linear combination n, +in, and =, —in,. If the
Condon and Shortley phase convention is to be used for step oper-
ator relations, a minus sign again has to be inserted somewhere.
The result of this confusion is that if one wishes to describe a state
of a many-pion system (such as a two-pion state with the pions
coupled to isospin T=1) one can find any sign one pleases by
looking at the appropriate place in the literature.

A second kind of difficulty arises in the consideration of particles
and antiparticles, charge conjugation, and creation and annihilation
operators. This is seen in its simplest form by examining the follow-
ing operators describing a system of neutrons and protons. The
operator

B=ala,+ala, (D.4)

is clearly the number operator giving the total number of nucleons
and is a scalar under isospin transformations. On the other hand,

the operator
t

nd

2ty =ala,—ala, (D.5)

is the zero component of an isovector. The coupling of two spins
of one-half using the Condon-Shortley phase convention places the
positive sign in the triplet and the negative sign in the singlet, in
disagreement with the expressions (D.4) and (D.5). It then follows
that we cannot consider (a], al) and (a,, a,) to be two isospin doub-
lets. An extra negative sign is needed somewhere if Condon-Short-
ley phases are to be used. The customary choice is to make minus
a, the member of the isospin doublet rather than a,. Since operators
which annihilate particles also create the corresponding antiparticles
the extra minus sign is also inserted in discussing the antinucleon
doublet. The same situation then obtains in the case of the K-meson
isospin doublet with a negative sign inserted by convention in the
K°.

These same phase difficulties carry over into the discussion of all
Lie groups. The first difficulty applies directly to the set of gener-
ators or the group of operators of the Lie algebra. These operators
themselves constitute a multiplet, a vector in the case of angular
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momentum, and an octet (1,1) in the case of SU;. However, to
define a multiplet from these operators consistent with the Condon
and Shortley phase convention it is always necessary to introduce
minus signs in certain places.

In the case of SUj; further phase difficulties are encountered when
attempting to treat the three SU, subgroups on an equivalent basis.
One finds that it is impossible to define phases for a multiplet con-
taining the generators in such a way that all of the step operators
for the three SU, subgroups have a positive sign. This can be seen
very simply by examining the Sakata model. The three SU, sub-
groups then correspond to transformations in the (n, p) space, the
(n, A) space and the (4, p) space. Let us now consider the sakaton
and antisakaton triplets. We have seen above thatisospin operations
onnucleonsandantinucleons can be made consistent withthe Condon
and Shortley phase convention by adding a minus sign in the neu-
tron annihilation (antineutron creation) operator. By symmetry it is
evident that this negative sign also fixes up U-spin which operates
in the (n, A) space. However, it does not help V-spin, which oper-
ates in the (A, p) space and is independent of the neutron and the
phase of neutron operators. A phase must be changed either in the
proton or A-operators to make V-spin step operator relations con-
sistent with the Condon and Shortley phase convention. This then
messes up either isospin or U-spin. It is impossible to change phases
in such a way that one and only one minus sign appears in each of
the following three pairs, (p, n), (n, A) and (4, p).

In this book no attempt has been made to choose a universal
consistent set of phase conventions. In each specific example phases
have been chosen for maximum convenience in that particular ex-
ample. For all relations involving angular momentum algebra the
Condon-Shortley phase convention has been used. In the treatment
of SU, using isospin and U-spin, Condon and Shortley phases have
been used, implying that these phases could not simultaneously be
used for V-spin. Since V-spin is not used directly in these cases, the
awkward V-spin phases pose no difficulty. Positive phases have been
used for all particles in the treatments of elementary particles, both
for isospin and U-spin, for reasons of simplicity. This leads to no
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errors in the results for physically measurable quantities. If ampli-
tudes or matrix elements (rather than their absolute magnitudes) are
used in conjunction with other results obtained elsewhere with
different phase conventions, inconsistencies and errors arise. Note,
for example, that positive phases are used for all isospin and U-spin
triplets, whereas some negative phases are frequently used as dis-
cussed above for pions. Positive phases have been used for both
particles and antiparticles in disagremeent with the argument given
above for the nucleon and K-doublets. With the positive phases
used here, negative signs would appear inawkward placesinrelations
involving charge conjugation. However, the operation of charge
conjugation is never employed explicitly in these examples, and
the necessity for introducing the negative signs never occurs. How-
ever, inconsistencies can occur if these results, expressed as ampli-
tudes, are combined with results obtained by other means using the
standard phase convention.
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