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PREFACE

As a graduate student in experimental physics, I found the study
of group theory considered to be a useless ‘high-brow’ luxury.
Furthermore all attempts to follow a lecture course resulted in a
losing battle with characters, cosets, classes, invariant subgroups,
normal divisors and assorted lemmas. It was impossible to learn
all the definitions of new terms defined in one lecture and remem-
ber them until the next lecture. The result was complete chaos.
It was a great surprise to find later on that (1) techniques based
on group theory can be useful; (2) they can be learned and used
without memorizing the large number of definitions and lemmas
which frighten the uninitiated. Angular momentum is presented in
elementary quantum mechanics courses without a detailed analysis
of the Lie group of continuous rotations in three dimensions. The
student learns about angular momentum multiplets and coupling
of angular momenta without realizing that these are the irreducible
representations of the rotation group. He also does not realize
that the algebraic properties of other Lie groups can be applied to
physical problems in the same way as he has used angular momen-
tum algebra, with no need for characters, classes, cosets, etc.
This book began as a short article with the aim of presenting
the ‘group theoretical’ methods used in nuclear structure in a
simple way. Another short article was begun to point out that
bilinear products of creation and annihilation operators lead to
Lie algebras, and to classify the algebras obtained in this way.
These were then combined with a discussion of ‘quasispin’ oper-
ators acting like fictitious angular momenta which arise in various
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areas in physics. This material, now in Chap‘ters 4 and 5, was pres-
ented in a series of lectures at Argonne National Laboratory in
the summer of 1961, discussing simple models of many-particle
systems and the application of group theory. The article thus
became a set of lecture notes.

The Argonne lecture notes were still unfinished when unitary
symmetry appeared and created a demand from high energy
physicists for intelligible lectures on group theory. They wanted to
understand and use unitary symmetry without learning about
characters and cosets. A series of lectures was given at the Univer-
sity of Illinois and the lecture notes had a different emphasis from
the Argonne notes. The audience was interested in unitary sym-
metry and elementary particles, not in nuclear structure and many-
body problems. After several revisions and additions the lecture
notes from Illinois and Argonne were combined and extended to
form this book.

The aim of the book is to show how the well-known techniques
of angular momentum algebra can be extended to treat other Lie
groups, and to give several examples illustrating the application
of the method. Because of the present interest in symmetries of
elementary particles, this particular application is stressed. Chap-
ter 1 presents the essential features of the method by analogy with
angular momentum and points out that bilinear products of crea-
tion and annihilation operators lead to Lie algebras. Chapter 2
presents isospin as the first example of the method. Chapter 3
presents the group SU, and its application to elementary particles.
Chapter 4 gives the treatment of the three-dimensional harmonic
oscillator using SU, and discusses its application to nuclear struc-
ture. Chapter 5 considers the classification of Lie algebras of
bilinear products of creation and annihilation operators, symplec-
tic groups, and the applications to pairing correlations and senior-
ity in many-particle systems. Chapter 6 discusses permutation
symmetry and gives a simplified version of Young diagrams as a
guide to their use. ~

The appendices constitute a large portion of the book and pre-
sent a detailed study of the application of SU, algebra to unitary
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symmetry of elementary particles. Appendix A builds up the struc-
ture of the SU; multiplets by combining fundamental triplets.
Appendix B develops the U-spin method for calculating experi-
mental predictions from unitary symmetry. Appendix C presents
many detailed examples of experimental predictions from unitary
symmetry. Appendix D is a short discussion on the phases which
plague all investigators.

I should like to express my appreciation to many colleagues at
the University of Illinois and Argonne National Laboratory who
forced me to explain this material to them in a series of constantly
interrupted lectures, and to the secretarial staff, particularly
M. Runkel and E. Kinstle who performed the incredible job of getting
the notes out almost before the lectures were given. It is a pleasure
to thank Y. Ne’eman for introducing me to unitary symmetry and
C. A. Levinson and S. Meshkov for showing me how the techniques
they developed for nuclear structure could be used for elementary
particles. I should also like to thank G. Racah for many stimulating
discussions and to acknowledge having learned a great deal from
a series of his seminar lectures which showed how many useful
results could be obtained with the use of simple but powerful
algebraic methods. Finally I should like to thank all my colleagues
at the Weizmann Institute who helped in the preparation of this
book, and particularly L. Mirvish, who typed the manuscript,
R. Cohen, who prepared the figures, and H. Harari for criticism of
the manuscript.
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CHAPTER 1

INTRODUCTION

Physicists have not yet learned to live with group theory in the
same way as they have learned for other mathematical techniques
such as differential equations. When an experimentalist or advanced
graduate student encounters a simple differential equation in the
course of his work, he does not run away and hide, worry about
whether the solution to the equation really exists, or indulge in
mathematical exercises of a ‘high-brow’ nature. He either solves
the equation or goes to the literature and looks up the solution.
On the other hand, many sophisticated theorists who are quite at
home in the complex plane seem to be afraid of what might be
called elementary exercises in group theory. This is all the more
mysterious since many of these so-called group theoretical methods
are in principle no different and no more complicated than certain
mathematical techniques which every physicist learns in a course
in elementary quantum mechanics; namely, the algebra of angular
momentum operators.

The reason for this difficulty may be that physicists have still
not made the separation analogous to that made for differential
equations between those parts of the subject which belong to the
physicist and those which belong to the mathematician. The
standard treatment of group theory for physicists begins with
complicated definitions, lemmas, and existence proofs which are
certainly necessary for a proper understanding of group theory.
However, it is possible for physicists to understand and to use many
techniques which have a group theoretical basis without necessarily
understanding all of group theory, in the same way as he now uses

1



2 INTRODUCTION §1.1

angular momentum algebra without delving deeply into the myster-
ies of the three-dimensional rotation group.

The purpose of this treatment is to show how techniques analo-
gous to angular momentum algebra can be extended and applied
to other group theoretical problems without requiring a detailed
understanding of group theory.

1.1. REVIEW OF ANGULAR MOMENTUM ALGEBRA
Consider three angular momentum operators J,, J, and J, which
satisfy the well-known commutation rules

Uy I, =1, [y Jl=iJ,, V., Jl=iJ,. (L)

From these commutation rules it follows that there exists an
operator
P =TT+ IE

which has the property of commuting with all the angular momen-
tum operators:

W3 J =% J,1=[J3%J.]1=0. (1.2)
Since J? commutes with all the operators, it commutes with any one
of them, and one usually chooses the operator J,. One can then in
any problem find a complete set of states which are simultaneous
eigenfunctions of J? and J, with eigenvalues usually designated by
J and M. We use the conventional designation for these states

\J, M . (1.3)
The remaining two operators J, and J, do not commute with J,,
but the following simple linear combinations
Jy=(,+iJy)) and J_=(J,—iJ,) (1.4)
satisfy particularly simple commutation rules. Since J?> commutes
with all the operators, we have
V2 (J+iT ) =% (J,—iJ)]=0. (1.5)
The commutators with J, are also quite simple,
Va U +iT )= +iJ}),

o Ue=iJ )] = —(J,—iJ,) . (1.6)
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The commutator of each of these operators with J, is just the same
operator again, multiplied by a constant. It then follows that if
either of these operators operates on a state which is a simultaneous
eigenfunction of J? and J, with eigenvalues J and M, the result is
another state which is an eigenfunction of J? with the same eigen-
value J and which is also an eigenfunction of J,, but with the eigen-
value M+ 1.

i), MY =) I +D-MM D) |J,M£1). (1.7)

The value of the coefficient appearing on the right-hand side is
easily obtained by a little algebra. This result and the trivial

T\J, M> = M|J, M> (1.8)

define matrix elements for all of the angular momentum operators
for all of the complete set of states.

Beginning with any particular state, |J, M), a set of states can be
generated by operating successively with the operators (J,+iJ,)
and (J,—iJ,). This process cannot be continued indefinitely be-
cause M can never be greater than J. Thus one finds restrictions on
the possible eigenvalues of J and M, and obtains the well-known
result that these may be either integral or half-integral and that for
any eigenvalue J there corresponds a set or multiplet of 2J +1 states
all having the same eigenvalue of J and having values of M equal
to —J, —=J+1, ..., +J. The full set of states'in a multiplet can be
generated from any one of the states by successive operation with
the operators (J,+iJ ).

Some of these features can be demonstrated simply ip diagrams
of the type shown in Fig. 1.1. These diagrams are one-dimensional
plots of the eigenvalues of J,. Fig. 1.1a represents the operators
(J+iJ,) and (J,—iJ,) as vectors which change the eigenvalue of
J, by *1, respectively. Figure 1.1b illustrates the structure of a
typical multiplet, in this case one with J=2Z, in which a point is
plotted for each value of J, where a state exists in the multiplet.
The operation of any of the operators in Fig. 1.1a on the states in
the multiplet of Fig. 1.1b is represented graphically by taking the
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appropriate vector of Fig. 1.1a, placing it on Fig. 1.1b and noting
which states are connected by this vector.

(a)

-2 -5/2 -3/2 -1/2 172 ¥2 5/2 72
Jz

Fig. 1.1

There are also well-known rules for combining multiplets. A
system may consist of several parts, each of which is characterized
by a multiplet having a particular value of J. (An example of this
would be the orbital and spin angular momenta of a particle.) These
multiplets can be combined to form a multiplet describing the
whole system. (For example, an orbital angular momentum of 2
and a spin of } for a particle can be combined to give a total angular
momentum either of 3 or 3.) Given the J-values for the multiplets
describing parts of the system, there are simple rules for deciding
which possible values of J occur for the total system, and there are
algebraic techniques involving vector coupling coefficients for
expressing the wave functions of the combined system which belong
to a given multiplet. There is also one very simple rule which results
from the different character of the multiplets having half-integral
and integral values of J. If two multiplets having integral values of
J are combined, the multiplet describing the overall system must
also have integral values of J. If two multiplets having half-integral
values of J are combined the multiplets describing the combined
system must also have integral values of J. On the other hand, if a
multiplet having an integral value of J is combined with one having
a half-integral value of J, the multiplet describing the combined
system then must have a half-integral value of J.

So far we have considered only the consequences of the angular
momentum commutation rules (1.1) and have made no mention of
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any Lie group. All the results obtained thus far therefore depend
only on the existence of operators satisfying the angular momentum
commutation rules and are not in any way dependent upon the
cxistence of a continuous group of transformations. Let us now
consider briefly the relation between the angular momentum
operators and the group of continuous rotations in three dimensions.
It is well known that the operators J,, J, and J, can be considered
as generators of infinitesimal rotations. For example, if y is a wave
function for a particular system and J is a total angular momentum
operator for that system then the wave function

Y'=(1+ieJ )y (1.9

represents the state i rotated by infinitesimal angle ¢ about the
x-axis. Similar relations exist for infinitesimal rotations about the
y- and z-axes and finite continuous rotations can be generated from
these infinitesimal rotations. The statement that a Hamiltonian is
invariant under rotations is equivalent to the statement that it
commutes with the three angular momentum operators, since the
latter generate infinitesimal rotations from which all the finite
rotations can be built. By studying the properties of these rotations
and the way wave functions and operators transform under them,
many interesting and useful results can be obtained. These, however,
are not considered in this treatment. Rather we confine ourselves
to those results which are obtainable simply from the algebra of
the angular momentum operators; i.e. from the properties of the
generators of the infinitesimal rotations.

The algebraic relations among the angular momentum operators
are useful in physical problems because these operators are often
simply related to other operators which describe properties of a
physical system. Examples of such operators are the Hamiltonian,
clectric and magnetic moments, and operators inducing transitions.
Operators of physical interest often satisfy very simple commutation
rclations with the angular momentum operators. This is of course
cquivalent to stating that the corresponding physical quantities
transform in a simple way under rotations. The simple transforma-
tion properties are expressed mathematically by the classification
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of operators as scalars, vectors, tensors, etc. These simple trans-
formation properties are also expressible as simple commutation
relations. A scalar operator which is invariant under rotations
commutes with all the angular momentum operators. A vector
operator consists of three components which transform into com-
binations of one another under rotations and which satisfy commu-
tation relations with the angular momentum operators analogous
to those of the angular momentum operators among themselves.

Ve S1=1J,, S1=1J,, S]=0 (1.102)
Ve V=iV, U, Vil=iV, [, V=iV,  (L.10b)

where S'is a scalar operator and (V,, V,, V,) are the components of
a vector operator.

More generally, operator multiplets can be defined in a manner
analogous to the wave function multiplets. These operator multi-
plets are called irreducible tensors and their components transform
into linear combinations of one another under rotations. The
commutators of such tensor operators with the angular momentum
operators have the same form as the step operator relations (1.7)
and (1.8) for angular momentum multiplets

[(Ux£i,), Tigd =Y/ k(k+1)—q(q £ 1) Tegz 1) (1.11a)
Va Tig) = 9T, (1.11b)

where T, is the g-component of an irreducible tensor of degree k,
and the indices k and g are analogous to the angular momentum
eigenvalues J and M for the corresponding wave function multiplet.
Such an irreducible tensor has 2k +1 components and the index g
takes on 2k +1 values from —k to +k.

From the commutation relations (1.11) it follows that irreducible
tensors combine in the same way as angular momentum multiplets
and that the calculation of matrix elements of irreducible tensor
operators between angular momentum eigenstates satisfies angular
momentum coupling rules. This is expressed quantitatively by the
Wigner-Eckart theorem which states that the matrix elements of
different components of the same irreducible tensor between states
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which are members of the same two angular momentum multiplets
are all proportional to one another with coefficients depending only
upon angular momentum algebra and independent of the intrinsic
properties of the operators. All these matrix elements are thus
determined by a single number characteristic of this operator: the
so-called ‘reduced matrix element’.

Let us now review in more detail how angular momentum
algebra is used in physical problems. We consider first the applica-
tion of angular momentum algebra to the solution of the time-
independent Schrodinger equation. There are several possibilities
depending on the form of the commutation relation between the
Hamiltonian and the angular momentum operators.

(1) The Hamiltonian commutes with all the angular momentum
operators. Then a complete set of eigenstates of the Hamiltonian
can be found which are also eigenfunctions of J? and J, and the
2J +1 states of a multiplet are all degenerate eigenstates of the
Hamiltonian. The use of the angular momentum algebra therefore
simplifies the solution of the eigenvalue problem for the Hamiltonian
by defining two integrals of the motion; i.e. two quantum numbers
which can be used to specify the eigenstates of the Hamiltonian.
Note that J, or J, could also be chosen instead of J, to specify the
states, which would then be linear combinations of the eigenfunc-
tions of J,.

(2) The Hamiltonian does not commute with all the angular
momentum operators but still commutes with J? and J,. An exam-
ple of this case is the motion of a spinless charged particle in a spheri-
cally symmetric field with an additional uniform magnetic field in
the z-direction. The Hamiltonian for this case would have the form

H=H,+KJ, (1.12)

where H, commutes with all the angular momentum operators and
the K is a constant. For this case, the eigenstates of the Hamiltonian
can still be chosen to be simultaneous eigenfunctions of J? and J,,
but the 2J +1 states of a multiplet are no longer degenerate. The
splitting of the energy levels in a multiplet is determined by the
terms in the Hamiltonian that do not commute with J, and J,.
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For the example (1.12) the energy levels within the multiplet are
equally spaced with a splitting K between adjacent levels, as a result
of the term KJ,. Note that for this case it is not possible to choose
J or J, rather than J, to specify the states, as J, and J, do not
commute with the Hamiltonian.

(3) The Hamiltonian does not commute with all the angular
momentum operators, but the commutators have a simple form.
The example (1.12) satisfies this criterion, since

[H, (U £1J))] = KU, %1T,). (1.13)

The commutators can be used to determine properties of the energy
spectrum of the Hamiltonian. For example, given any eigenfunc-
tion { of the Hamiltonian (1.12) we can generate other eigenfunc-
tions using the commutator (1.13).

Hy=Ey, (1.14a)
H(J,£iJ W =(E£K)J T )Y . (1.14b)

This result (1.14) leads again to the conclusion that the energy
spectrum of the Hamiltonian (1.12) consists of sets of equally
spaced energy levels with a spacing K between adjacent members.
Although in this simple case these conclusions were evident by
inspection of the Hamiltonian (1.12), there are many other cases
where commutation relations analogous to (1.13) lead to non-trivial
results.

The commutation relations (1.13) can be considered as the equa-
tions of motion of the operators J,+iJ,. The content of equations
(1.13) and (1.14) can also be described by saying that operators
which ‘satisfy simple equations of motion’ can be used to generate
excitations of a system.

(4) Any of the properties above apply not to the exact Hamil-
tonian but to an approximate Hamiltonian which is used as a basis
of perturbation theory. The treatment of the unperturbed Hamil-
tonian is then simplified by the use of the angular momentum
algebra as described above.

If the perturbation is expressed simply in terms of irreducible
tensors, the first-order perturbation result for the energy splitting
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within a given angular momentum multiplet is given directly by the
Wigner-Eckart theorem in terms of a single parameter depending
on the perturbation. Common examples are the Zeeman and quad-
rupole splittings arising when nuclear, atomic or molecular systems
are placed in external fields.

The angular momentum algebra is used in a similar manner in
time-dependent problems such as decay and reaction processes
where one considers a transition between an initial state and a final
state. If the Hamiltonian commutes with all the angular momentum
operators, then angular momentum must be conserved in the transi-
tion from the initial state to the final state. If the initial state is not
an angular momentum eigenfunction (e.g. a plane wave) it is often
useful to expand it in angular momentum eigenfunctions (partial
wave expansion) because of the conservation of angular momentum.
Each angular momentum eigenvalue (partial wave) then defines an
independent channel for the reaction which is uncoupled from the
other channels. This decoupling of the different channels allows
the scattering process to be treated separately for each channel,
thereby greatly simplifying the solution of the Schrddinger equation.

1.2. GENERALIZATION BY ANALOGY OF THE ANGULAR
MOMENTUM RESULTS

Starting from the simple commutation rules (1.1) we have found
a classification scheme for the states of a quantum mechanical
system in which angular momentum operators have simple proper-
ties. The states are divided into sets or multiplets such that the
matrix elements of all angular momentum operators vanish between
states belonging to different multiplets. Within each multiplet the
action of the angular momentum operators is very simple. Appro-
priate linear combinations of these operators can be chosen such
that they are either diagonal like J, or ‘step operators’ like J, +iJ »
The latter simply change the eigenvalue of the state on which they
are operating and thus jump from one state to another through the
multiplet.

We now assert without proof: Whenever one encounters a set of
operators satisfying similar commutation rules, one can play the
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same game. One can define multiplets and suitable linear combina-
tions of the operators such that these operators are either diagonal
in the representation defining the multiplets or act like step operators
within a multiplet. The matrix elements of all operators between
states of different multiplets vanish. Those readers who are inter-
ested in the general proofs underlying these assertions are referred
to the standard literature on group theory. Those who are not
interested in the proofs can see in the material which follows
examples of how the game can be played quite usefully in specific
cases by simply going ahead and constructing the representations
and the multiplets.

In the remainder of this section we state more precisely what
exactly is meant by ‘playing the game’. In the following section
some general arguments concerning the algebra of second quantized
operators are given to show why such sets of operators can be
expected to occur frequently in physics. In the remainder of this
book we deal with a number of specific examples showing how the
technique can be used.

Let us now assume that we have a finite number of operators X,
which satisfy commutation rules similar to those of the angular
momentum operators; namely that the commutator of any two of
the operators is a linear combination of the operators of the set:

X, X]=YC,, X (1.15)

where the coefficients CZ, are constants. A set of operators satis-
fying such commutation rules is called a Lie algebra. We now assert
that from these operators we can construct operators like J* which
commute with all the operators of the set. There may be only one
such independent operator, like J? in the case of angular momenta,
or there may be more than one. We shall call such operators C,.
These operators are sometimes called Casimir operators.

[Ch X,]=0 for all p, 0. (1.16)

We now choose one of the operators of the set, as we chose J, for
angular momentum, to be diagonal in the representation we shall
define. It may be possible to choose more than one such operator.
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1f there are many operators in the set there may be operators within
the set which commute with one another. We shall choose as many
commuting operators as we can find and denote them by the letters
H,. These operators H; also commute with the Casimir operators
C,, since the latter commute with all the operators of the set. We
can therefore find a complete set of states in any problem which are
simultaneous eigenfunctions of all the operators C, and H;, with
eigenvalues C, and H;

IC Hi) (1.17)

analogous to the complete set of states |J, M) for angular momen-
tum. We now further assert that the remaining operators of the set
can all be expressed in terms of a linearly independent set of step
operators. We call these operators

E, (1.18)

and state that they satisfy the following simple commutation rules:
[C, E]=0, (1.19)

[H;, E,] =o,E,. (1.20)

These are directly analogous to the commutation rules satisfied by
the operators J,+iJ,. The operators E, commute with all of the
operators C,, since the latter commute with all of the operators of
the set. Furthermore, the commutator of an operator E, with an
operator H, gives always the same operator E, multiplied by a
constant «; depending upon the particular operators H; and E,.
The operators E, are thus step operators which shift the eigenvalue
of the operators H; by an amount «,. Thus

EalC:p H:> = K(C;s a, H;)IC;:s H:+al> (121)

where the constant K(C,, «, H/) can be determined by algebraic
mcans in a manner similar to the corresponding constants for the
angular momentum operators, but which may involve more te-
dious calculations if there are more operators in the set. Thus
¢q. (1.21) together with the trivial result
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define the matrix elements for all of the operators of the set for a
complete set of states.

Note that beginning with any particular state |C,, H;), a set of
states can be generated by operating successively with the step
operators E,. In this way one can generate sets of states or multi-
plets. Using the explicit form of the coefficients in eq. (1.21) and
limitations on the size of the multiplet, one can arrive at the struc-
ture of the multiplet in the same way as one finds that angular
momentum multiplets consist of 2J 41 states having eigenvalues of
M changing in steps of one from —J to +J.

Diagrams similar to those of Fig. 1.1 can be drawn to represent
any Lie algebra and the associated multiplets. However, if there are
several operators H; which are simultaneously diagonal, several
quantum numbers are then required to specify the position of a
state in the multiplet. In such a case, the diagrams are not one-
dimensional as in Fig. 1.1, but r-dimensional where r is the number
of simultaneously commuting operators H; which exist in the set.
The Lie algebra is then said to be of rank r. The angular momentum
algebra is thus of rank 1.

There are general rules for combining multiplets like there are
rules for coupling angular momenta. For any particular set of
multiplets describing parts of the system, one can find which
multiplets arise in describing the total system, and coefficients
analogous to the vector coupling coefficients can be defined for
expressing the wave functions of the combined system which. belong
to a given multiplet. There may also be other divisions of the kinds
of multiplets into different groups analogous to the division of
angular momentum multiplets into integral and half-integral angular
momenta and there may be particularly simple rules like those for
angular momenta regarding the combining of multiplets from the
same or different sets.

A continuous group of transformations can be defined from these
operators by defining infinitesimal transformations in a manner
similar to those defined for rotation. Consider, for example, the
transformation

Y =1 +ieX )y . (1.23)



§1.2 INTRODUCTION 13

A continuous group of transformations can be built up from the
infinitesimal transformations generated in this manner by each of
the operators of the Lie algebra. Such a continuous group of trans-
formations is called a Lie group. In the conventional treatment, one
starts with a continuous group and finds the underlying Lie algebra.
We do the reverse beginning with the Lie algebra and we may not
even talk about the associated Lie group at all. The results which we
use are those summarized in eqs. (1.15)—(1.22). These depend only
on the existence of the Lie algebra and do not require the existence
of the associated Lie group. We shall also see that physical problems
often arise in which the Lie algebra appears naturally in the
physical conditions of the problem, while the associated Lie group
does not have any simple physical interpretation. The main use for
the Lie group in these cases is to provide a convenient label for the
Lie algebra and thus indicate where useful studies of this algebra
may be found in the literature.

Multiplets of operators or irreducible tensors can be defined for
any Lie algebra in a manner analogous to those for angular momen-
tum. One finds sets of operators which can be placed in a one-to-one
correspondence with particular multiplets. The commutators of
such irreducible tensor operators with the operators E, and H; of
the Lie algebra are analogous to the corresponding relations (1.21)
and (1.22) for the wave function multiplets. The commutator of a
particular component of an irreducible tensor operator with a step
operator E, is just the appropriate component of the same irre-
ducible tensor, whereas the commutator with the diagonal operators
H,; of any component of an irreducible tensor gives the same com-
ponent again. Matrix elements of different components of an irre-
ducible tensor operator between two states within the same two
multiplets are related by a generalization of the Wigner-Eckart
theorem. In the general case, there may be more than a single re-
duced matrix element required to determine all the matrix elements
completely, a situation which does not arise in the angular momen-
tum algebra.

The application of the Lie algebra to a physical problem is
directly analogous to the corresponding application of the angular
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momentum algebra. The application to the solution of the time-
independent Schrodinger equation depends upon the form of the
commutation relations between the Hamiltonian and the operators
of the Lie algebra. Again there are several possibilities:

(1) The Hamiltonian commutes with all the operators. A com-
plete set of eigenstates of the Hamiltonian can be found which are
also eigenfunctions of all the operators C, and H;. All the states
within a multiplet are degenerate eigenstates of the Hamiltonian.
The use of the Lie algebra therefore simplifies the solution of the
eigenvalue problem for the Hamiltonian by defining a number of
integrals of the motion; i.e. quantum numbers which can be used
to specify the eigenstates of the Hamiltonian.

(2) The Hamiltonian does not commute with all of the operators
of the algebra but still commutes with the operators C, and H;.
One can still define a complete set of eigenfunctions of the Hamil-
tonian which are also eigenfunctions of these operators but the
states within a given multiplet are no longer degenerate.

(3) The Hamiltonian does not commute with all the operators of
the Lie algebra but the commutators have a simple form. The Lie
algebra is still useful in determining the eigenfunctions and eigen-
value spectrum of the Hamiltonian. Some of the operators of the
Lie algebra may be considered as satisfying simple equations of
motion and generating elementary excitations of the system.

(4) Any of the properties above apply not to the exact Hamil-
tonian but to an approximate Hamiltonian which is used as a basis
of perturbation theory. The treatment of the unperturbed Hamil-
tonian is then simplified by the use of the Lie algebra as described
above. If the perturbation or ‘symmetry-breaking’ part of the
Hamiltonian is expressed simply in terms of the generalized irre-
ducible tensors, the first-order energy splittings are given by the
generalized Wigner-Eckart theorem.

Similar relations are obtainable for the study of transitions from
an initial to a final state. If the Hamiltonian commutes with the
operators of the Lie algebra and the initial state is an eigenfunction
of the operators C, and H,, the final state must also be an eigen-
function of these operators with the same eigenvalues. If the initial
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state is not an eigenfunction of these operators, it can be expanded
in these eigenfunctions. Each non-vanishing term in the expansion
then defines a ‘channel’ through which the reaction can proceed.
The most common application is to reactions in which the initial
state consists of two particles, an incident particle and a target.
Both particles in the initial state may be represented by wave func-
tions which are individually eigenfunctions of the operators C,
and H;. The state of the combined system is then an eigenfunction
of the operators H; with an eigenvalue equal to the sum of the two
corresponding eigenvalues. However, the state of the combined
system is in general not an eigenfunction of the operators C,ltisa
linear combination of eigenfunctions of C, with different eigenvalues
in the same way that the product of two angular momentum eigen-
functions is generally not an angular momentum eigenfunction but
is some linear combination of angular momentum eigenfunctions.
The different eigenvalues of C, each define an independent reaction
channel which is uncoupled from the others, analogous to angular
momentum partial waves.

The relation of the Lie algebra to the physical problem can also
be expressed as some symmetry of the Hamiltonian, just as angular
momentum algebra is related to the invariance of the Hamiltonian
under rotations. A formal symmetry can always be obtained if the
operators of the Lie algebra satisfy simple commutation relations
with the Hamiltonian. The continuous group of transformations
constructed from relations like (1.23) must also transform the
Hamiltonian in a simple way. However, these continuous trans-
formations may not have any clear physical meaning, in contrast to
the case of rotations. In such cases, the symmetry of physical inter-
est associated with the Lie algebra may be certain discrete transfor-
mations. Examples of this type are given in the following chapters.

1.3. PROPERTIES OF BILINEAR PRODUCTS OF SECOND
QUANTIZED CREATION AND ANNIHILATION OPERATORS
Let af and a, be creation and annihilation operators for a particle
in a quantum state k. The pedestrian reader should not be alarmed
by the sudden appearance of second quantized field operators since
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we shall use them only in a very simple way. Consider first operators
creating and annihilating bosons. These operators satisfy the com-
mutation rule

[a, aj]=1 (1.29)

for the annihilation and creation operators of the same quantum
state k. Commutators involving two different states all vanish.
We can construct bilinear products of these operators having the
form a}a,, alal and a,a,. Note that the commutator of any two
such bilinear products is either zero or a linear combination of

bilinear products such as, for example, the commutator
[(akaTm), (‘1;“:)] = aTmaI ’ (125)

assuming that the states k, m and » are all different. In any such
commutator an annihilation operator in one member kills off a
creation operator in the other member according to the commuta-
tion rule (1.24), thus leaving only the remaining two operators and
giving a bilinear product. The commutation rule (1.25) is just the
kind of expression that we need to.define a Lie algebra. If we have a
finite number of states k and construct all possible bilinear combi-
nations of creation and annihilation operators, the commutator
of any two bilinear products gives a linear combination of members
of the set of bilinear products. A Lie algebra is therefore defined.
It is perhaps surprising to note that a Lie algebra is also defined
for bilinear products of fermion creation and annihilation operators.
Although it is not the commutation rules of fermion operators
which are normally defined but the anticommutation rules, it
turns out that these reduce to ordinary commutators where bilinear
products are involved. As an example, consider the commutator

[ax, (afa,)] (1.26)
of the fermion annihilation operators a, with the bilinear product
a} a,,. These fermion operators satisfy the anticommutation relations

apay + a,Iak =1,
apd,, +a,a,=0, (1.27)

ala, +a,al=0.
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Using these anticommutation relations we find that the commutator
(1.26) can be simplified:

Lav, (ala,)] = arala, — ala,a, = acala, + afaa, = a,.  (1.28)

The commutator of a single fermion operator and a bilinear prod-
uct of fermion operators is again a single fermion operator or, in
general, a linear combination of single fermion operators. Thus
the commutator (rather than the anticommutator) of two bilinear
products of fermion operators is a linear combination of bilinear
products of fermion operators. Such bilinear products also form a
Lie algebra if one considers a finite number of states k and all
possible bilinear products.

We now see how Lie algebras can arise very naturally in many
physical problems. Bilinear products of second quantized creation
and annihilation operators can be of interest physically in a wide
variety of problems either in field theory or inmany-particlesystems.
Before examining specific cases, let us just make a few further gener-
al observations about the kinds of bilinear product which can arise.

‘We have already noted that there are two types of bilinear prod-
ucts: those referring to boson operators and those referring to
fermion operators. The Lie algebras defined by bilinear products of
boson operators are simply related to those for fermion operators
with a few small differences. The commutators have the same struc-
ture, but there may be a difference of sign in some commutators
between the boson and the fermion case. The operators aal or
a,a, which either create or annihilate a pair of particles in the
same quantum state are perfectly reasonable operators for the
boson case. However, for the fermion case, these operators vanish
identically because of the Pauli principle (or the anticommutation
relations).

The bilinear products can also be divided as follows: There are
those like aa,, the product of a creation and an annihilation
operator, which annihilate one particle and create another and
therefore do not change the number of particles in the system.
There are also those like a} a}, or a,a,, which either create a pair of
particles or annihilate a pair of particles and therefore change the
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number of particles in the system. The commutator of a pair of
bilinear products, each of which does not change the number of
particles in the system, gives a linear combination of operators
which also do not change the number of particles in the system.
One can therefore construct Lie algebras containing only those
bilinear products which do not change the number of particles.
Thus if one considers the most general Lie algebra which can be
constructed from a particular finite set of creation and annihilation
operators, one finds that this includes operators of both types:
those which change the number of particles, and those which do
not. Another Lie algebra is formed by a subset of these operators
consisting of all operators of the set which do not change the
number of particles.



CHAPTER 2

ISOSPIN. A SIMPLE EXAMPLE

2.1. THE LIE ALGEBRA

The simplest case of a Lie algebra generated from bilinear products
of creation and annihilation operators is the case where there are
only two quantum states. This is just the case of ‘old-fashioned’
isopin as it was originally conceived for systems of neutrons and
protons before the discovery of mesons and strange particles. Let
a; and a be operators for the creation of a proton and a neutron,
respectively, and let a, and a, be the corresponding annihilation
operators. For the present we do not consider the space and spin
states of these particles and assume that there is only one quantum
state for the proton and one quantum state for the neutron. We
shall put in the space and spin later.

Let us now construct the Lie algebra of all possible bilinear
products of these operators which do not change the number of
particles. These are products of one creation operator and one
annihilation operator. Since there are two possible operators of
each type, there are in all four possible bilinear products which
do not change the number of particles:

t t

t
a,a,, a,a,, a,

t

a, and aga,.

P

The first of these operators annihilates a neutron and creates a
proton in the same quantum state; i.e. it changes a neutron into a
proton. The second operator does the reverse, changing a proton
into a neutron. These two operators are thus the ordinary isospin
operators 7, and 7_. The other two operators annihilate either a

19
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proton or a neutron and create the same particle back again. These
are just number operators which count the number of protons and
neutrons. The sum of the last two operators is just the total number
operator which counts the number of nucleons. Since all of the
other operators do not change the number of nucleons, this total
number operator commutes with all the others. It is therefore con-
venient to divide the set of four operators into a set of three plus
the total number, or baryon number, operator which commutes
with all of the others.

B= af,ap +ala,, (2.1a)
T, =ala,, (2.1b)
T_= a:’,ap R (2.1¢)
1o =1%(ala,—ala,)=Q—1B. (2.19)

The operator 7, defined as half the difference between the num-
ber of protons and the number of neutrons is just equal to the total
charge Q minus half the baryon number, since the protons carry
one unit of charge and the neutrons carry no charge. The operators
7,4, T7— and 7, satisfy commutation rules exactly like angular mo-
menta

[t0s T4]l=74, (2.2a)
[to, T-1=—7_, (2.2b)
[ty,t-1=21,. (2.2¢)

This has led to the designation isospin for these operators and to
the description of rotations in a fictitious isospin space. Since the
commutation rules for the isospin operators are exactly the same
as those for angular momenta, we can immediately take over all
of the results of angular momentum which follow from the commu-
tation rules. However, let us first put in the space and spin degrees
of freedom for the proton and neutron. Let azk represent the crea-
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tion operator for a proton in a quantum state k£ where the letter &
indicates both the space and the spin state, and similarly for neu-
trons and for the annihilation operators. The isospin operators
defined by eq. (2.1) can now easily be generalized simply by adding
the index k everywhere and summing over the index &

B= ;a;,‘apk +alam, (2.3a)
T, = ;azkank , (2.3b)
T_= Ekza:’,kapk , (2.3¢)
To= %;(a;‘,kap,‘ —ala)=0-1B. (2.3d)

The commutation rules (2.2) are also valid for the new definitions
(2.3) of the isospin operators. Since bilinear products corresponding
to two different quantum states k£ and k" commute, the only terms
in any commutator which give a non-vanishing contribution are
those which refer to a single quantum state k. Thus, each quantum
state k acts independently in the commutator and the operators ob-
tained are always a sum over all values of k. Since the summation
over the space-spin indices does not affect the Lie algebra, the sim-
pler notation of eq. (2.1) is used from this point, with the under-
standing that this is a shorthand for writing down the more cum-
bersome expressions (2.3) involving sums over the space-spin in-
dices.

By analogy with angular momentum we see that there exists an
operator T2 analogous to J2, which commutes with all the operators
(2.3). States of a neutron-proton system can be classified into
multiplets, each characterized by an eigenvalue of the operator T2,
Each state can be chosen to be a simultaneous eigenfunction of 7,
and T2 The eigenvalues of T have the form T(T+1) where T is
either an integer or a half-integer. Each multiplet consists of 27"+ 1
states with eigenvalues T, of the operator 7, varying in the steps of
unity from —7 to +7.
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The relation (2.3d) expressing the operator 7, in terms of the
charge and baryon number indicates independently that this oper-
ator can have only integral or half-integral eigenvalues. Such con-
siderations can be useful in other cases where the result is not al-
ready known by the direct analogy with angular momentum. We
also obtain certain rules for combining multiplets directly by noting
that the total charge and the total baryon number are additive
quantum numbers and therefore 7, also is additive. Thus if a system
consists of several parts, each of which is in a state which is an
eigenfunction of t,, the whole system is described by a state which is
also an eigenfunction of 7, and the eigenvalue is simply the sum of
the eigenvalues of the separate parts. Thus if two multiplets having
integral values of T, are combined, the multiplet describing the
overall system must also have an integral value of 7, and similarly
for two multiplets having half-integral values of T,. On the other
hand, if a multiplet having an integral value of T, is combined with
one having a half-integral value the multiplet describing the com-
bined system then must have half-integral values of T,.

Let us now consider which Lie group is associated with these
isospin operators. By analogy with the angular momentum oper-
ators, we allow these operators to generate infinitesimal transfor-
mations such as

V' ={1+ie(ts +T)h . 2.4

We use the linear combination 7, +7_ because these operators
individually are not hermitean. Note that such a transformation
changes a proton or a neutron into something which is a linear
combination of the proton and neutron state. These transformations
are thus transformations on complex vectors in a two-dimensional
proton-neutron Hilbert space. The transformations are unitary;
thus the Lie group associated with isospin is some group of unitary
transformations in a two-dimensional space.

The whole group of unitary transformations in a two-dimensional
space is generated by the set of four operators (2.3) including the
baryon number B. The unitary transformations generated by the
operator B are of a very trivial nature, namely, multiplication of
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any state by a phase factor. Since the three isospin operators form
a Lie algebra by themselves, the associated continuous group is a
subgroup of the full unitary group in two dimensions. This group is
usually called the special unitary group or unimodular unitary
group and denoted by the letters SU,. This is the group of unitary
transformations which are represented by the matrices having a
determinant of +1. Such transformations clearly form a group by
themselves since the product of any two matrices having a deter-
minant of +1 is also a matrix having a determinant of +1.

Thus isospin transformations are two-dimensional unitary trans-
formations rather than three-dimensional rotations. There is no
three-dimensional space which has any direct physical interpreta-
tion. The analogy with angular momentum is purely formal, and
arises because the Lie algebra of operators generating unitary
transformations in a two-dimensional space happens to be the same
as the algebra of the operators generating rotations in a three-
dimensional space.

Operators satisfying commutation rules like angular momenta
mysteriously arise in a number of physical problems. These are
often called ‘quasispins’ but have no direct physical interpretation
in terms of any rotation in a real three-dimensional space. The
reason why such quasispins often occur is that there is only one Lie
algebra of rank 1, where the states within a multiplet are specified
completely by one quantum number and where the diagram of the
multiplet as shown in Fig. 1.1 is a one-dimensional plot. This algebra
is just the angular momentum algebra. Thus no matter what kind
of transformation is being considered, rotations, unitary trans-
formations, or more complicated ones such as symplectic trans-
formations (cf. § 5.4), these all give a Lie algebra which is the same
as the angular momentum algebra when the number of dimensions
in the space where the transformations are taking place is sufficiently
small so that the Lie algebra must be of rank 1. There is no real
physical three-dimensional space associated with these quasispins.
The descriptions in terms of rotations in quasispin or isospin space
are purely formal, have no direct physical meaning, and are useful
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only because we are familiar with the algebraic properties of angular
momentum operators.*

2.2. THE USE OF ISOSPIN IN PHYSICAL PROBLEMS

The algebra of isospin operators is useful in physical problems in-
volving nucleons because of the charge independence of nuclear
forces. This implies that the Hamiltonian describing nuclear forces
commutes with the three isospin operators, (2.3), and that states of
nucleons can be classified into multiplets characterized by the value
of the total isospin quantum number T. There are, of course, elec-
tromagnetic forces which are not charge independent. However,
these are weak in comparison with the nuclear forces and can be
considered as a perturbation. The different states of an isospin
multiplet are therefore not degenerate; there is a small splitting
due to electromagnetic effects.

The isospin Lie algebra takes on added significance when mesons
and strange particles are introduced. These are easily incorporated
into the isospin scheme. All the results regarding isopin multiplets
and matrix elements of operators follow from the commutation
rules (2.2) and do not depend upon the specific definition of the
isospin operators (2.3) in terms of neutrons and protons. The new
particles are therefore included in the isospin scheme simply by
requiring that they fit into isospin multiplets characterized by a
particular value of T and that there are 2T +1 states in a multiplet
with eigenvalues T, of the operator 7, which vary in steps of unity
from —T to +7T. The isospin operators are now no longer defined

* One may note here that the continuous group of isospin transformations
is very peculiar since they transform physical nucleon states into states which
contain linear combinations of neutrons and protons. Such linear combinations
are never observed physically because of charge conservation and it has been
suggested that such states do not exist in the Hilbert space describing physical
states because of superselection rules. It is therefore perhaps satisfying that all
of the useful isospin results can be obtained directly from the Lie algebra which
involves only physical operators acting upon physical states and that the un-
physical Lie group of continuous transformations is not required in order to
obtain any of these results.
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by eqs. (2.3) which apply only to nucleons, but can be completely
defined by the relations which give the matrix elements of the
operators within a particular multiplet.

2T To) =Y T(T+)-To(To£ DIT, To£1)  (2.52)

ol T, To) = TolT, Tp). (2.5b)
A typical multiplet is shown in Fig. 2.1.
T m° L The relations (2.3d) between
1 o y the operator 7, and the charge

and baryon number no longer
hold since these refer only to
nucleon systems. However, the rules for combining multiplets having
integral or half-integral eigenvalues of 7, remain valid. They are a
general property of the Lie algebra and do not depend specifically on
the assumption that all states are made up of neutrons and protons.

Let us now examine some of the physical implications and conse-
quences of extending the isospin formalism to particles other than
nucleons. We first note that the experimentally observed charge
independence of nuclear forces requires that the interactions in
any system of nucleons are not changed under the isospin transfor-
mations which transform neutrons and protons into one another.
This implies that any particles which interact strongly with nucleons
must also transform in a simple way into other particles having
different charges. Otherwise the contribution of these particles to
the nuclear forces would change when protons are changed into
neutrons and the overall charge independence of nuclear forces
would be violated. The incorporation of all strongly interacting
particles into the isospin formalism therefore follows from the
experimentally observed charge independence of nuclear forces.

The extension of isospin to other strongly interacting particles
leads to the following types of experimental predictions:

Fig. 2.1

A. Predictions from the multiplet structure
1. Classification. The most obvious prediction is that all new
strongly interacting particles which are found and all resonances
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observed between strongly interacting particles must belong to
isospin multiplets. Once one member of a given multiplet is found,
all the other members of the multiplet must also exist.

2. Couplings. If one considers resonances between two particles,
the multiplet structures which can atise are determined by the
isospin coupling rules. For example, all resonances of pions (T'=1)
and nucleons (T'=%) must belong to multiplets having either T=1%
or T=3.

B. Predictions of relations between matrix elements

1. Decays. The decay rates or widths of resonances belonging
to the same isospin multiplet are related by isospin coupling rules.
Consider, for example, a nucleon—pion resonance having T'=3.
There are four charge states for this isospin multiplet and six possible
decay modes, since all charge states of the nucleon—pion system are
possible final states for the decay. The transition matrix elements for
all six decay modes are proportional to one another; i.e. they are
all proportional to the same reduced matrix element with a pro-
portionality factor which 1s a Clebsch—-Gordan coefficient for the
coupling of T=1 to T'=1 to give a total T=3.

2. Reactions. Cross sections for different reactions involving
members of the same multiplets are related in a manner involving
isospin coupling rules (usually involving some vector addition or
Clebsch—-Gordan coefficients). For example, if one is considering
pion-nucleon scattering including both elastic and charge exchange
processes, one notes that there are three pion states and two nucleon
states and thus six possible elastic scattering reactions. There are
also two independent charge exchange reactions (n* n—n°p and
n~ p—n°n) giving a total of eight. On the other hand, any pion—
nucleon state can be expressed as a linear combination of members
of a multiplet having =4 and a multiplet having T=3. Since the
interaction responsible for the scattering conserves isospin, there
are only two independent channels, and all the eight processes
considered should have their cross sections expressible in terms of
two complex amplitudes, the 7=1 amplitude and the 7’=3% ampli-
tude. Thus eight experimental cross sections are determined by
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three real parameters: the magnitudes of the two scattering am-
plitudes and the relative phase. This result can be expressed
as predictions of relations between the various elastic and charge
exchange scattering cross sections of pions and nucleons. Similar
relations exist for all reactions involving strongly interacting
particles.

3. Selection rules. One can also find selection rules which result
from isospin. For example, if one considers only nucleons and
pions, states having an odd baryon number must belong in a multi-
plet with a half-integral isospin, whereas states with an even baryon
number must belong in a multiplet having an integral isospin. From
this we obtain a general selection rule: a state that does not satisfy
these conditions cannot decay into any combination of nucleons
and pions by strong interactions which are invariant under the
isospin transformations (i.e. whose Hamiltonian commutes with
the operators (2.3)). The X-hyperon with odd baryon number
and integral isospin and the K-meson with baryon number zero
and half-integral isospin are examples of this selection rule and
they can only decay by weak interactions in which isospin is not
conserved. -

C. Symmetry-breaking effects

The above predictions all follow from the assumption that the
Hamiltonian describing strong interactions is invariant under
isospin transformations; i.e. it commutes with the isospin operators.
The isospin formalism is useful in making predictions also for the
case where the Hamiltonian is not invariant under isospin trans-
formations, if its transformation properties can be expressed in a
simple way. This is the case for the electromagnetic interaction
which is not charge independent and which does not commute
with the isospin operators 7, and t_. The electromagnetic inter-
action behaves under isospin transformations like a linear combina-
tion of an isoscalar and an isovector. This can be seen by noting that
within any isospin multiplet the electric charge of a particle is the
sum of a constant and the eigenvalue T,,. The constant commutes
with all the isospin operators. T, is the eigenvalue of an operator
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7, which is a member of an isospin triplet; i.e. it behaves like a mem-
ber of an isospin multiplet with T=1.

This transformation property is particularly useful in cases where
the electromagnetic interaction can be treated as a perturbation.
Let us consider the operation of the electromagnetic interaction on
a particular state [T, To)

E|T, To) = (L+1)T, To) (2.6)

where I, and I, are the isoscalar and isovector parts, respectively,
of the electromagnetic interaction E. We first note the following
selection rule: The isoscalar part of the electromagnetic interac-
tion commutes with all of the isospin operators and therefore
cannot change the eigenvalues of 7" and T,. The isovector part
behaves like an element of a T=1 multiplet which is coupled by
ordinary angular momentum coupling rules. Thus 7/, has non-
vanishing matrix elements only between the state |T, 7)) and states
of total isospin T+1, T and T—1 and has no matrix element con-
necting two T'=0 states. We also note that the matrix elements of
I, between different pairs of states in the same isospin multiplets are
related by the Wigner-Eckart theorem.

If we are considering a reaction which goes via first-order pertur-
bation theory in the electromagnetic interaction, the transition
probability depends upon the matrix elements of the electromag-
netic interaction between the initial and final states. We thus obtain
selection rules and relations between reactions involving members
of the same isospin multiplets.

If the reaction considered does not go by first-order perturbation
theory, more complicated relations are obtained. If we are con-
sidering an nth-order process, the electromagnetic interaction oper-
ator acts n times. If we wish to consider the corresponding isospin
coupling we must consider all possible couplings of n isovectors as
well as the replacement of some of these isovectors by isoscalars.
The situation in the general case is therefore so complicated that
useful predictions are rarely obtained. However, since many
radiative processes are of first order useful predictions of the kind
described above can often be obtained.
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2.3. THE RELATION BETWEEN ISOSPIN INVARIANCE AND
CHARGE INDEPENDENCE

Although the invariance of strong interactions under isospin trans-
formations is synonymous with the charge independence of forces
between nucleons, the forces between other kinds of particles are
not necessarily charge independent. It should be emphasized that
isospin invariance does not, for example, require that forces be-
tween pions be charge independent. To see this let us first examine
how isospin invariance implies the charge independence of forces
between nucleons and we shall see that the same arguments are not
valid for pions.

Consider the interaction between two nucleons in a state which is
antisymmetric in space and spin. Such a space-spin state has three
possible charges: it can be a two-proton state, a two-neutron state,
or a proton-neutron state. The isospin formalism says that these
three states form an isospin multiplet with T'=1. If the interactions
are invariant under isospin transformations; i.e., they commute
with the isospin operators, then the interaction must be the same
in every state of the multiplet. The proton—-proton, proton-neutron
and neutron-neutron interactions are thus all the same in states
which are antisymmetric in space and spin. For states which are
symmetric in space and spin there is no argument since such states
can only be neutron-proton states with no possibility of other char-
ges.

Let us now consider the interaction of two pions in a state which
is symmetric in space (no spin). Such a state has six possible charge
states: (n*,n%), (n”,n7), (=% %), (x*,7°), (=% ") and (n~, 7).
The isospin formalism says that two pions in a symmetric spatial
state can have either T=0 or T=2. In other words, the six space-
symmetric charge states of two pions form two isospin multiplets:
a quintet and a singlet. If strong interactions are invariant under
isospin transformations, then the interaction between two pions
must be the same for any state within a given multiplet. However,
the isospin invariance makes no prediction of the relation between
the interaction of two pions in the 7=2 state and in the T=0 state.
Thus the interaction of two pions is not the same in all six possible
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charge states. The two neutral states, (x*,n”) and (n°,n°) are both
linear combinations of the two isospin states, T’=2 and T=0, and
the interaction is therefore determined by the two parameters
specifying the interactions in these two states. Thus, isospin in-
variance does not require that the forces between two pions be charge
independent.

We see that isospin invariance requires charge independence only
for the forces between pairs of particles which form an isospin
doublet with T'=1 like the nucleons. For all higher multiplets the
forces are in general not charge independent. To require these forces
to be charge independent requires an additional greater symmetry
beyond that of isospin.*

Let us now consider the interaction between X-hyperons and
pions and the restrictions imposed by isospin invariance. There are
three charge states of each, and thus in all nine possible charge
states for the X-r system. Since these are two different particles,
there are no restrictions imposed by the Pauli principle. Both the
2 and the = have isospin 1, thus the nine states of the X-n system are
distributed among three isospin multiplets: a quintet having T'=2,
atriplet having T=1, and a singlet having T=0. If the Hamiltonian
is invariant under isospin transformations, the interaction must be
the same for all 2~rn states within the same multiplet. Thus, the
interaction between X’s and 7’s in the nine possible charge states
are expressed as functions of three parameters; the quintet inter-
action, the triplet interaction, and the singlet interaction. However,
isospin invariance does not require any relation between these three
interactions. Thus, the X-r interaction is not charge independent
in the sense that it is independent of the charges of the X and the =.
However, there are relations between the interactions in that there
are only three independent interactions instead of nine. The basis
of these relations is easily understood in terms of the requirement
that the interaction between nucleons be completely charge in-
dependent and that the interactions between other particles be

* One can see that complete charge independence for pion—pion forces would
require that the singlet and quintet interactions be equal.
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restricted in the manner required to maintain the nucleon charge
independence.

One might imagine a situation where the X’s and the n’s were the
first particles to be discovered and nucleons for some reason did
not exist or were unstable. This rather artificial situation is considered
here because the analogous situation does exist in the octet or eight-
fold model of elementary particles with unitary symmetry. One
would then find experimentally that there were relations between
the interactions in the different Y-n charge states which were
described simply in terms of the algebra of the group SU,. One
might say that these interactions behaved asif there existed a doublet
of basic particles for which the interactions were really charge inde-
pendent. On the other hand, one could also give a simple description
of the Z-=m interaction in terms of the isospin operators without
requiring that the nucleon or some other isospin doublet exist.

2.4. THE USE OF THE GROUP THEORETICAL METHOD

The simple example of isospin illustrates the use and the power of
the group theoretical method. In this case it was not even necessary
to investigate the algebra of the operators or the structure of the
multiplets. All that was necessary was to show that the operators
satisfied the same commutation rules as angular momentum oper-
ators. From this point it was possible to use all of the results al-
ready known from angular momenta, even though the physical
situation described by isospin was very different from rotations in
ordinary three-dimensional space. One finds repeatedly in physics
that abstract algebraic relations obtained in one kind of physical
problem can be useful in another problem where the same algebra
arises.

We note again that the physical basis of isospin is the charge
independence of nuclear forces and the coupling of all strongly in-
teracting particles in accordance with this charge independence.
The isospin formalism does not add any new physics to this basis.
It merely offers a simple and compact method for calculating the
consequences of this basic physical principle for experimental
measurements on strongly interacting particles.
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In this example we have seen how Lie algebra can be generated
from bilinear products of creation and annihilation operators and
how this algebra is useful in two cases: (1) The strong interactions,
where the Hamiltonian commutes with all of the isospin operators;
(2) The electromagnetic interaction which has simple commutation
relations with the isospin operators and which is sufficiently small
to be treated as a perturbation. We did not need to investigate the
structure of the algebra and the multiplets in detail because these
were immediately evident by the connection with angular momen-
tum. In the following chapter we consider a more complicated
example where the algebra and multiplet structure must be in-
vestigated, but the general treatment is a simple extension of isospin.



CHAPTER 3

THE GROUP SU; AND ITS APPLICATION TO
ELEMENTARY PARTICLES

3.1. THE LIE ALGEBRA

We have seen that the isospin Lie algebra is generated from bilinear
products of creation and annihilation operators in the case where
there are only two quantum states. Consider now the case where
there are three quantum states. A convenient example of this case is
the Sakata model of elementary particles in which the transforma-
tions of isospin are extended to include the lambda hyperon as well
as the proton and the neutron. Let a, and a, be operators for the
creation and annihilation of a lambda particle. We now construct
the Lie algebra of all possible bilinear products of the nucleon and
lambda operators which do not change the number of particles.
With three creation operators and three annihilation operators,
there are nine possible bilinear products. These are conveniently
written as follows:

B=a;ap+a,7,an+afia,i ,

r+=a;‘,an, ‘r_=a:',ap,
to = Hala, —ala,), o
B+=a;a,1, B_=ala,,
C, =adla,, C_=a1ap,

N =%(alap+af,an —2a%a,)=1B+S.

As in the case of isospin, we are not writing sums over space and

33
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spin variables, but are using the simpler notation of eq. (2.1).

As in the case of isospin, some of the bilinear products are oper-
ators which change one kind of particle into another, while others
are number operators which simply count the number of particles
of a particular kind. Again the sum of all the number operators is
just the baryon number and commutes with all of the other oper-
ators which do not change the baryon number. We therefore divide
the set of nine operators into a set of eight plus the baryon number
which commutes with all of the rest. In the set of eight operators,
there are still two number operators and it is convenient to choose
the linear combinations given in eq. (3.1); namely, the isospin oper-
ator 1, and the operator N which is just one-third the difference
between the number of nucleons and twice the number of lambdas.
Since the nucleons have strangeness 0 and the lambda strangeness
—1,the operator N is just equal to the sum of one-third of the baryon
number and the strangeness as indicated in eq. (3.1). The remaining
six operators in the set are the two isospin operators 7, and 7_
and the four operators B,, B_, C, and C_ which change lambdas
into nucleons and vice versa.

Let us now consider which Lie group is associated with these
operators. By an extension of isospin we see that these operators
generate infinitesimal transformations in a three-dimensional pro-
ton-neutron-lambda Hilbert space. These transformations are again
unitary; thus the Lie group associated with these operators is the
group of unitary transformations in a three-dimensional space.
Again the full unitary group in three dimensions is generated by
the set of nine operators including the baryon number. The set
of eight operators excluding the baryon number generates the
unimodular unitary group in three dimensions which is designated
by the notation SU;,. These are again unitary transformations which
are represented by the matrices having a determinant of +1.

Inspection of the set of operators (3.1) shows that the eight
operators form a Lie algebra of rank 2. The two operators 7, and N
commute with one another, and it is impossible to find a third
operator which commutes with both of these. A few simple obser-
vations show that the remaining six operators are already in the
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desired form of step operators, E,, defined in eqgs. (1.18), (1.19) and
(1.20), shifting the eigenvalues of t, and N. The eigenvalue of
T, is unaffected by the creation or annihilation of a lambda, which
has isospin zero. A change in the eigenvalue of N is the same as a
change in strangeness, since none of the operators change the
baryon number. Strangeness is unaffected by the creation or anni-

N

14

Fig. 3.1

hilation of a nucleon, which has strangeness zero. The operators
with the subscript +, B, and C,, create a proton and annihilate a
neutron, respectively, thereby increasing the eigenvalue of 7, of
any state by +3. Similarly, the operators with the subscript —
change the eigenvalue of 7, by —34. The B-operators annihilate a
lambda and therefore increase the strangeness and the eigenvalue
of N by +1; the C-operators create a lambda and therefore change
the strangeness and the eigenvalue of N by —1. The following
commutation relations can thus be written down without any
calculation.

[to, 74] = £74, [N,z:] =0,
[to, B:]= £3B., [N,B.]=B., (3.2a)
[to, Csl=%3Cs, [N, Ci]l=-C:.
These commutation rules can be represented on a diagram analo-
gous to Fig. 1.1a for angular momentum. However, since this alge-

bra is of rank 2 the diagram is a two-dimensional plot of the eigen-
values of 7, and N as shown in Fig. 3.1.
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The remaining commutators are easily obtained by simple algebra.

[t+, Bi] =[t4, C:]1=0=[C,, C_]=[B,, B_],

[t+, B] =By ) [B:, Cil =714,

[ts, C5]l =—C5, [t4,7-1 =21, (3.2b)
B+, C_]1=1(BN+21),

[B-, Ci]1=3(BN—-21).

Following the analogy with isospin we might attempt to find
operators C, which are functions of these operators and commute
with all of them. The eigenvalues of these operators would then be
used to label the multiplets as the eigenvalues of the operator T>
label the isospin multiplets. However, the operators C, for the SU,
group are rather complicated and we defer considering them to a
later point. We shall see that a considerable amount can be learned
about the structure of the multiplets without knowing the explicit
form of the operators C,.

3.2. THE STRUCTURE OF THE MULTIPLETS

The SU; multiplets are generated by successive operation on any
state within the multiplet with the eight operators of the Lie algebra
represented in Fig. 3.1. The states of each multipletarerepresented as
points onatwo-dimensional plot of theeigenvalues of 7, and N analo-
gous to the one-dimensional plot of isospin multiplets in Fig. 2.1.
The points representing the states of a given multiplet should appear
in such a plot as a two-dimensional lattice in which the lattice vec-
tors are just the vectors of Fig. 3.1 representing the operation of the
operators B, C; and 7. The lattice therefore has the hexagonal
character of Fig. 3.1 in which a change of N by +1 is always ac-
companied by a change in T, of + 1. Since the SU, algebra is larger
than the isospin algebra and includes it as a subset, we expect the
multiplets for SU; to be larger than isospin multiplets and to con-
tain several isospin multiplets at different values of N. Since the
B- and C-operators change T, by +1%, both integral and half-
integral isospins occur in the same multiplet in contrast to the case
of isospin multiplets. From the hexagonal character of the lattice
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we see that integral and half-integral isospin multiplets appear
alternately with increasing values of the quantum number N.

Let us now consider some simple examples of SU; multiplets.
The neutron—proton-lambda triplet itself forms a multiplet since
the eight operators simply transform these particles into one another.
This triplet is represented in the diagram, Fig. 3.2a. Similarly, the
corresponding antiparticle triplet forms a multiplet and is illustrated
in Fig. 3.2b. For convenience, we use the term sakaton to denote
neutron, proton or lambda analogous to the term nucleon for
neutron and proton. Let us now examine the states of the system
formed by one sakaton and one antisakaton. The nine states formed
by combining these two triplets can be analyzed to determine their
behavior under the transformations generated by the operators
(3.1). However, since these sakaton—-antisakaton states are gener-
ated from the vacuum by the operation of a product of a sakaton
creation and a sakaton annihilation operator, e.g. af,a,,lO) we see
that these nine states look very much like the nine operators (3.1).
If we write down these states explicitly we find that they split into
two multiplets, a singlet and an octet analogous to the operators
(3.1). These multiplets are shown in Figs. 3.3a and 3.3b. The
singlet has N=0 and T,=0 and thus has the same SU,; quantum
numbers as the vacuum. The octet looks very much like the dia-
gram, Fig. 3.1, of the generators of the group.

Note that there are two points in the octet of Fig. 3.3b at N=0,
Ty, =0. This degeneracy is a characteristic of the SU; multiplet
which is not found in isospin and angular momentum multiplets.
In the latter the eigenvalue of J, or T, is sufficient to specify a state
completely within a multiplet. In the SU, multiplets the eigenvalues
of the two operators N and 7, are not always sufficient for complete
specification of a state within a multiplet; there may be several
states having the same values of these quantum numbers. An addi-
tional quantum number is therefore necessary to distinguish between
these states. The choice of this additional quantum number is not
determined by thealgebra of the group SU;. In general, such addition-
al quantum numbers are chosen for convenience in the particular
physical problem under consideration, and the choice is not unique.
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One way to find such additional quantum numbers is to examine
other groups which are subgroups of the one being considered.
The Casimir operators C, of the subgroups may define a convenient
additional quantum number. This turns out to be the case in our
present analysis of SU5. The obvious subgroup is the SU, group
which for physical reasons we should like to keep as a good quantum
number. It turns out that the total isospin operator T2 gives us an
additional quantum number which is all that is required for com-
plete specification of the states in a multiplet. In the particular
multiplet under consideration, Fig. 3.3b, we see that the four states
having N=0 split into an isospin triplet and an isospin singlet.
Thus the two states having N=0 and 7,=0 are distinguished by the
eigenvalue of T, which is T=1 for the triplet state and T=0 for the
singlet state.

From examination of Figs. 3.2 and 3.3 we see that these multiplets
are indeed hexagonal, two-dimensional lattices. To give a complete
specification of a multiplet we need to know its shape and size and
the number of states appearing at each lattice point. A few simple
considerations discussed below show that the shape of the multiplet
must always be a hexagon or truncated triangle specified by two
parameters as shown in Fig. 3.4. For reasons which will become
apparent below these two parameters are called A and p and rep-
resent the size of the isospin multiplets occurring at the maximum
and minimum values of N in the particular SU; multiplet.

A=2T at N=Np.,
u=2T at N=Np,.

The multiplets are then labeled (4, x). In this notation the two trip-
lets of Fig. 3.1 are denoted by the values (1,0) and (0, 1) respect-
ively; the singlet of Fig. 3.3a is denoted by (0,0) and the octet of
Fig. 3.3b is denoted by (1,1).

The requirement that the multiplets must have the form of Fig.
3.4 can be deduced from certain simple symmetries and arguments
similar to those used in obtaining properties of crystal lattices. We
first note that all multiplet diagrams must be symmetric about a
vertical axis through the center since a reflection across this axis
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simply interchanges the neutron and proton in the sakaton multiplet
and in general takes any state into the corresponding one of the same
isospin multiplet having the equal and opposite eigenvalue of z,,.
(This is just the ‘charge symmetry’ transformation which is used in
defining G-parity.) Since the neutron, proton and lambda are all
considered on an equal basis in the Sakata model, the transforma-
tions which interchange the proton and lambda leaving the neutron
unchanged, or which interchange the neutron and lambda and leave
the proton unchanged, should be similar in nature to the proton—
neutron transformation discussed above. Thus we see that the
diagrams must also be symmetric with respect to reflections about
the axes denoted by the numbers 2 and 3 in Fig. 3.4 which are at
angles of 120° with respect to the vertical. Cyclic permutations of
the n—p-A triplet corresponding to rotations of 120° of the multiplet
diagram are obtained from successive reflections across two of the
axes mentioned above. The multiplet must therefore also have a
shape which is invariant under rotations of + 120°. These symmetry
properties are almost sufficient to fix the shape of the multiplet as
that given in Fig. 3.4. (The only other possibilities not yet excluded
involve re-entrant corners in the polygon.)

We also note that the operation of charge conjugation changes
the signs of the quantum numbers N and T,. The charge conjugates
of the particles in a given multiplet such as that shown in Fig. 3.4a
then form a multiplet having a shape obtained by inversion through
the origin as shown in Fig. 3.4b. The charge conjugate multiplet
thus has the values of / and p interchanged (e.g., see sakaton and
antisakaton multiplets of Fig. 3.2).

Detailed analyses of the properties of the multiplets should in-
clude: (1) a rigorous demonstration that the multiplets do indeed
have the shape shown in Fig. 3.4; (2) a prescription for the number
of states occurring at each lattice point in the multiplet for the cases
where several isospin multiplets occur with the same N-value, and
(3) explicit expressions for the matrix elements of the operators
(3.1) between different states of the same multiplet. This analysis
can be carried forward in a variety of ways.

One method would be to follow a procedure analogous to that
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used in angular momentum; namely, to obtain relations between
matrix elements by use of the commutation rules and by noting
that certain operators must have vanishing matrix elements when
operating on states at the edge of the multiplet. This method is
perfectly straightforward, but the algebra is more complicated
and tedious than for the case of angular momentum.

Anotherline of approach is analogous to the Schwinger treatment
of angular momentum by building everything up from doublets of
spin 4. One can build up all possible SU; multiplets by combining
sakaton triplets. This is consistent with the philosophy of the Sakata
model which considers that all elementary particles are composites
built from the elementary sakaton and antisakaton triplets. This
procedure is also relatively simple and is, of course, valid inde-
pendently of the validity of the Sakata model. This approach is car-
ried out in detail in Appendix A.

Another approach is to use the different SU, subgroups of SUj;,
noting that within each subgroup the transformations and matrix
clements of operators are just those of ordinary angular momentum
algebra. We note, for example, that the operators 7, and t_ which
move us back and forth horizontally across any multiplet diagram
move from one state to another in a given isospin multiplet and the
matrix elements are just the usual Clebsch-Gordan coefficients of
eq. (2.5). However, instead of defining isospin as transformations
of neutrons and protons into one another, leaving the lambda
invariant, we could equally well define a different kind of operation
which interchanges neutrons and lambdas leaving the proton in-
variant. Such transformations would move us across the diagram
in the direction perpendicular to that of axis 2 in Fig. 3.4. Since
these transformations are also two-dimensional unitary transforma-
tions, they are described by an angular momentum algebra in
which the operators C, and B_ play the roles of 7, and 7_. The
matrix elements of these operators are again given by ordinary
Clebsch-Gordan coefficients of the three-dimensional rotation
group. The matrix elements of tie operators B, and C_ are ob-
tained from a third SU, group in which protons and lambdas are
transformed into one another, the neutron is left invariant, and we
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move along lines perpendicular to axis 3 in Fig. 3.4. In dealing with
these different SU, multiplets we must be careful whenever there is
more than one state at a given lattice point as at the origin in Fig.
3.3b. The particular states chosen to be eigenfunctions of 7' are
not the proper states to fit into multiplets which cross the diagrams
at angles of 120°. Different linear combinations of these states
which are not eigenfunctions of 72 are necessary to fit into the other
SU, multiplets. The proper linear combinations, however, are
easily determined after some simple algebra. This approach is
carried out in detail in Appendix B.

(2,5)

Fig. 3.5. The (2,5) multiplet

We note that the two parameters 1 and u characterize a particular
multiplet in the same way as the quantum numbers J and 7 for
angular momentum and isospin. One might ask whether these
parameters are connected with the eigenvalues of the Casimir
operators C, of the SU; algebra. This turns out to be the case.
However, it is much more convenient to use the numbers A and u
which have simple integral values to specify the multiplets rather
than the eigenvalues of the Casimir operators which turn out to be
complicated polynomials in A and u. This is analogous to angular
momentum where one uses the number J to characterize the multi-
plet rather than the eigenvalue of the operator J? which is the
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polynomial J(J +1). Further discussion of the Casimir operator is
given in Appendix B and in Chapter 4.

Using any of the methods outlined above one finds that there are
SU, multiplets labeled by the numbers (4, 1) for all possible integral
values of /1 and u. One also finds the following rule for deciding how
many states there are at each lattice point:

(a) The outer ring of lattice points is always single with only one
state at each lattice point.

(b) Going inward each consecutive ring of lattice points has one
more point at each lattice point than the outer ring. This continues
until one arrives at a ring which is either a point or a triangle.

(c) Once in going inward one arrives at a ring which is a triangle,
the number of states at each lattice point within the triangle is the
same as on the perimeter of the triangle.

These rules are illustrated in Fig. 3.5, which shows the (2,5)
multiplet. In this multiplet the outer ring is single, the next ring is
double, the third ring is triple and this ring is a triangle. Thus, the
states within the triangle are all triplets as well.

Some of the multiplets which are of particular interest in ele-
mentary particle classification are shown in Fig. 3.6. These are the
(3,0), the (0,3) and the (2,2) multiplets. The (3,0) and (0, 3) multi-
plets each have ten states and are sometimes called decuplets.

The operator N, the sum of % the baryon number and the
strangeness, has eigenvalues having the form n, n +4 and n— 4 where
nis an integer. However, since all of the operators in the set change
N by 0 or +1 and not by any fractional number, the eigenvalues of
N within a given multiplet must all have either the form n, n+% or
n—1%. Thus there are three different types of multiplets having eigen-
values of N which are either integral, integral +%, or integral —3.
This characterization of types of multiplets is analogous to the
angular momentum multiplets with either integral or half-integral
eigenvalues. It can be shown* that the classification of the SU;
multiplets into these three types is simply expressed in terms of the
numbers A and pu. The quantity $(1—pu) determines the type of

* See Appendix B, eq. (B.18).
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multiplet. The eigenvalues of N are integral, integral +1 or integral
—1 when the value of $(1— p) is integral, integral +4 or integral — 1,
respectively. This property is illustrated in the simple multiplets of
Fig. 3.2, 3.3 and 3.6.
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3.3. COMBINING SUs MULTIPLETS

In a system consisting of several parts the value of N for the total
system is equal to the sum of the values of N for the various parts,
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since both baryon number and strangeness are additive. One there-
fore arrives at rules for combining multiplets analogous to the rules
for combining integral and half-integral angular momenta.

m+@ - (@) (3.32)
(mEH+0m) @t (3.3b)
n+3) +@—3)->@) (3.39)

More detailed rules for coupling specific multiplets can be obtained
by methods analogous to those used for coupling angular momenta.
Unfortunately, these are not quite so simple as the angular mo-
mentum rules and one cannot remember them as easily as one re-
members that coupling T=>5 to T=4 gives all integral values of T
from 1 to 9.

One coupling which is of particular interest in elementary particles
is the coupling of two octets. For this case, it can be shown* that the
64 states formed from the elements of two octets break up into 6
multiplets.

(L,D+(1,1)> (0,00 +(1,1)+(2,2) + (3,00 +(0,3)+(1,1) . (3.9
S A

One finds a singlet, two octets, two decuplets and one 27-uplet.
Adding up the total number of states in these multiplets one finds
indeed 1 +8+427+410+10+48=064. The two octets might represent
two multiplets of the same type, in the same way that two isospin
triplets coupled together might represent a two-pion system. For
such a case, it is of interest to specify the multiplets of the combined
system with regard to their permutation symmetry. For example,
in coupling two T=1 isospin multiplets the T=0 and 7=2 multi-
plets for the combined system are symmetric with regard to per-
mutation of the two T=1 components whereas the 7=1 state

* Sce Appendix A, eq. (A.2).
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of the combined system is antisymmetric.

(T=1) +(T=1) = (T=0)+(T=2) + (T=1). (3.5)
S A

In the same way one finds that the first three multiplets in eq. (3.4)
are the symmetric combinations and the last three are antisym-
metric. This is indicated by the letters S and A in eq. (3.4).

One can define a generalized Pauli principle for identical SU,
multiplets in the same way as for isospin. The wave function for a
two-particle system can be written as a product of a space-spin
factor and a factor depending on the internal quantum numbers
isospin and hypercharge. One then requires the overall wave func-
tion to be symmetric for bosons and antisymmetric for fermions,
including both the space-spin and internal factors. Thus the states
of two bosons both belonging to the same octet must belong to the
multiplets labeled S in eq. (3.4) if the space-spin is symmetric and
to the multiplets labeled A if the space-spin part is antisymmetric.
For fermions the S-multiplets go with antisymmetric space-spin
and the A-multiplets with symmetric space-spin.

Note that two (1,1) octets appear in the coupling of two octets.
The analogous situation does not occur in coupling two isospin
multiplets, where one never gets more than one isospin multiplet
for the combined system having a given value of 7. In isospin
couplings several multiplets having the same T appear only when
one couples at least three isospin multiplets.

An example of such a case is the coupling of two nucleons and a
K-meson. Each of these particles is in a =4 isospin doublet. Thus
there are eight possible states for the two-nucleon-K-system and
these can be broken up into three multiplets, one 7’=3 quartet and
two T=% doublets. One can describe the two doublets by saying
that in the first doublet the two nucleons are coupled to 7=0 and
the resulting two-nucleon singlet is then coupled to the K-meson
to give T=14. In the second doublet the two nucleons are coupled

to T=1 and the resulting two-nucleon triplet is then coupled to the
K-meson to give T=1.
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{(N+N)r-o+K}r—y,
{(N+N)p_; +K}poy

However, this is not the only way to specify the individual T=4
doublets. Any linear combination of the states of the two doublets
isalso anisospin doublet and any two orthogonal sets of linear com-
binations can be used to specify the two doublets. One might, for
example, couple one of the nucleons to the K-meson first rather
than coupling the two nucleons and in this way specify the two
doublets by saying that in one of them a nucleon and the K are
coupled to T=0 and in the other to T=1.

{(N+K)r=0+N}r_y,

{(N+K)p-;y +N}r_y .
The two doublets obtained in this way (3.6b) would be linear com-
binations of the two doublets (3.6a) obtained by coupling the two
nucleons first and these two sets of doublets would be related by
unitary transformation.

A similar ambiguity exists in the specifications of the two octets
arising in eq. (3.4) when coupling together two SU; octets. It is
possible to distinguish between the two octets in the manner sug-
gested by eq. (3.4), namely, by the permutation symmetry. One of
the (1,1) octets is symmetric with respect to interchange of the two
components on the left-hand side of (3.4) and the other is antisym-
metric. On the other hand, any linear combination of the symmetric
and antisymmetric octets is also an octet although it does not have
a definite permutation symmetry. Permutation symmetry may not
be important in some physical problems (particularly if the two
octets being coupled together represent different kinds of distin-
guishable particles). In these cases any two orthogonal linear com-
binations of the two octets on the right-hand side of (3.4) may be
chosen to specify the states.

(3.6a)

(3.6b)

3.4. RSYMMETRY AND CHARGE CONJUGATION

The R-transformation or hypercharge reflection is defined on any
state as the reversal of the sign of the hypercharge Y and of the
isospin T, of the state accompanied by multiplication by a phase



48 THE GROUP SU, §3.4

factor determined by convention. This corresponds to an inversion
about the origin of the multiplet diagram. For multiplets like the
(1,1) octet which are symmetric about the origin the R-transforma-
tion carries one state into another state within the same multiplet.
For multiplets which are not symmetric about the origin, like the
(3,0) decuplet the R-transformation carries each state into the
corresponding state of the conjugate multiplet; e.g. it carries a
member of the (3,0) decuplet into a member of the (0, 3) decuplet.
The R-transformation is not included in the unitary transformations
of the group SU . It is thus possible for an interaction to be invari-
ant under SU; and not invariant under R and vice versa. Experi-
mental evidence seems to indicate that strong interactions are not
invariant under the R-transformation.

For bosons where particles and their charge conjugates appear
in the same SU; multiplet, the R-transformation is equivalent to
charge conjugation. The R-transformation is therefore useful in
considering properties of boson multiplets. Since boson multiplets
include states which are eigenstates of charge conjugation and
therefore of the R-transformation, a phase convention is necessary
to determine the phase of the eigenvalue of R. The phase is chosen
to be the same as that under charge conjugation; i.e. particles like
the n° which are even under C are even under R.

The R-transformation is useful in classifying multiplets occurring
in the combination of two (1,1) octets and in distinguishing between
the two equivalent octets arising in this combination. If the two
octets being combined are both even under R (e.g. two pseudoscalar
meson octets) some states of the combined system will be €ven under
R and others will be odd. The classification of the multiplets under
R is related to the classification by permutation symmetry but
slightly different. The three multiplets arising from states which are
symmetric under permutation of the two octets are even under R,
while the antisymmetric octet is odd under R. This is evident from
examination of the states in the center of the multiplet diagram
with zero charge and hypercharge. These states are produced by
taking linear combinations of states of the two initial octets in-
volving a particle and its antiparticle. Permutation cof the members
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of the two octets is thus equivalent to charge conjugation or to the
R-transformation. This argument is not valid for the (3,0) and (0, 3)
decuplets. Although these contain only states which are antisym-
metric under permutations they do not contain any states involving
a particle and its corresponding antiparticle. Charge conjugation or
the R-transformation on any state in the (3,0) decuplet lead to the
corresponding state in the (0,3) decuplet. The states in the two
decuplets are therefore not eigenstates of the R-transformation.

In considering reactions, decays or couplings to two-boson states,
the requirement of invariance under charge conjugation reduces the
number of channels. In particular, charge conjugation invariance
removes the ambiguity of two octets arising in the coupling of two
octets. If the two octets being coupled are equivalent bosons, one
of the octets arising in the combined system is even under C, while
the other is odd.

3.5. THE GENERALIZATION TO ANY SUs; ALGEBRA

We have used the Sakata model for elementary particles to develop
the SU, Lie algebra and determine the structure of the multiplets.
However, the algebra of SU; does not depend on the Sakata model;
the latter is merely a convenient way to introduce the algebra. This
is analogous to building up angular momentum or SU, algebra by
using the basic spin one-half objects, e.g. nucleons.

If a set of eight operators satisfying commutation rules like those
of the operators (3.2) should arise in any physical problem we now
know that these operators constitute the Lie algebra of the group
SUj;. These operators can be used to characterize states of the associ-
ated quantum mechanical system and group them into multiplets.
These multiplets will have the same structure that we have found
using the Sakata model for elementary particles, since multiplet
structure depends only on the Lie algebra and not on the particular
model used. The only possible difference between multiplet struc-
ture determined by a particular model and as determined from the
Lie algebra is the possibility that some multiplcts which are possible
in the Lie algebra may be absent from the particular model. For
example, if orbital angular momentum had been used to build up
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the structure of angular momentum multiplets the possibility of
half-integral eigenvalues for J would have been missed. We have
no proofthat the Sakata model gives all the possible SU; multiplets.
This happens to be the case but it will not be proved explicitly in
this book.

The Sakata model for elementary particles does not seem to be in
agreement with experiment at this time.

3.6. THE OCTET MODEL OF ELEMENTARY PARTICLES

Let us now examine the classification of states of elementary
particles from a somewhat different point of view. The experimen-
tally found elementary particles and resonances can be grouped into
sets of states all having the same spin and parity but differing by
‘internal’ quantum numbers such as charge and strangeness. One
might hope to classify these sets of particles into multiplets corre-
sponding to some Lie algebra. The operators of this Lie algebra
would then change only the internal quantum numbers of the state
and would not affect spin, parity, or any of the spacial variables.
Particles having the same spin, parity and strangeness but different
electric charge are grouped into isospin multiplets. We are therefore
looking for a higher symmetry, in which the multiplets would in-
clude several isospin multipletshaving different values of strangeness.
The electric charge and the strangeness are two additive conserved
quantities which can be used to specify the internal quantum num-
bers of a particle, and there is no other quantity of this kind in evi-
dence. This suggests that the Lie algebra desired is one of rank two.
The baryon number is also a conserved additive quantum number
but is not relevant to this discussion since there does not yet seem
to be any physical interest in placing particles having different values
of the baryon number in the same multiplet.

Let us now examine the experimentally observed sets of particles
to see whether they can be grouped into multiplets in a natural way.
We first examine two-dimensional plots of all known particles of a
given spin and parity. The coordinate axes might be electric charge
and strangeness since these are the two quantities conserved. How-
ever, since we know that we wish to include isospin in the higher
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symmetry a plot of T, and the hypercharge Y are more suitable
variables. This can be seen from Fig. 3.7, which shows plots for all
the known stable baryons of spin %, all the known pseudoscalar
mesons and all the known vector meson resonances. These dia-
grams immediately suggest the octet multiplets for the group SU;
with an additional singlet vector meson. The meson octets are just
like those predicted by the Sakata model. However, it appears
natural from the plot of Fig. 3.7 to place the baryons also in an octet
rather than having some of them in a triplet as in the Sakata model.
This classification of elementary particles is called the octet model
of unitary symmetry or the eightfold way.
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Let us now try to find a mathematical formulation for the octet
model. We have already constructed the algebra of the group SU,
using the Sakata model and found the structure of the corresponding
multiplets. These results can be used for any set of eight operators
satisfying the commutation rules (3.2) even though they have no
connection with the Sakata model (this is analogous to the applica-
tion of all angular momentum results to isospin, even though isospin
has no connection with a physical three-dimensional rotation).

We define for the octet model eight operators satisfying the
commutation rules (3.2). The three isospin operators 7, t_ and 7,
are defined in the conventional way. From Fig. 3.7, particularly
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from the baryon octet, we see that the diagonal operator N should
correspond to the hypercharge Y= B+ Srather thanto {B+Sasin
the Sakata model. Once the four operators 7., 7_, 7o and N are
defined, the remaining four operators are completely defined by the
commutation relations (3.2). The relations (3.2a) establish them as
step operators changing the eigenvalue of 1, by 4% and the eigen-
value of N by = 1. The relations (3.2b) give the commutators of the
step operators among themselves. Using these commutation rules
and the results of multiplet structure obtained from the Sakata
model the matrix elements of any one of these eight operators can
be calculated between any two states of a given multiplet. We there-
fore have a complete specification of these operators.

Since the hypercharge Y has only integral values only states with
integral eigenvalues of N can occur in the octet model. No multi-
plets with third-integral eigenvalues of N can occur. Thus only
those multiplets (4,u) occur for which $(1—p) is an integer. The
simplest multiplets occurring in the octet model are thus the (0,0)
singlet, the (1,1) octet, the (3,0) and (0,3) decuplets and the 27-
dimensional (2,2).

There is no simple description of the physical basis of the octet
model in terms of interactions between particles, analogous to the
charge independence of nuclear forces for isospin symmetry and
the equivalence of neutron-proton and lambda interactions for
the Sakata model. In the Sakata model the members of multiplets
more complicated than the sakaton triplets (e.g. the meson octets)
are not all equivalent and have different interactions. The unitary
symmetry requires merely that these interactions be related in such
a way as to preserve the equivalence of the interactions between the
three basic sakatons. This is analogous to the requirement by isospin
symmetry that the forces between 2’s and n’s have relations between
them which preserve the charge independence of nuclear forces.
In the octet model the eight basic baryons are not equivalent, and
the interactions between different pairs of baryons are related but
not identical. This is analogous to the hypothetical case discussed in
isospin where one considered the interactions between 2’s and =’s
resulting from isospin symmetry in the case where nucleons did not



§3.6 THE GROUP SU, 53

exist. The interactions between the mesons and baryons in the two
(1,1) octets are related as if there existed some fictitious triplet like
the sakaton for which the forces were really independent. However,
the existence of a basic sakaton-type triplet is not necessary for the
application of SU; symmetry, just like the existence of particles of
half-integral spin is not necessary in order to allow one to use an-
gular momentum. A basic triplet for the octet model would need to
have very peculiar properties since it would have third-integral
hypercharge. Hypothetical triplets have been used in mathematical
presentations of the octet model requiring both a boson triplet and
fermion triplet, and there has also been a suggestion that a triplet
with third-integral electric charge might exist.

There is no simple definition for SU; operators in the octet model
analogous to the definition (3.1) for the Sakata model. One can
define operators for the octet model in terms of creation and annihi-
lation operators but these definitions are rather cumbersome. The
procedure is directly analogous to the extension of the definition of
isospin operators (2.1) to include pions and hyperons as well as
nucleons. One would have to add terms involving creation and
annihilation operators for all these particles. Each term would have
a numerical coefficient differing from unity for particles like pions
which are not members of an isospin doublet and determined by
the relations (2.5). However, as soon as the simplicity of the rela-
tions (2.1) and (3.1) is lost one may just as well use relations of
the form (3.5) giving matrix elements of the operators within any
multiplet to define the operators rather than an explicit definition
in terms of creation and annihilation operators.

Let us now examine the kind of experimental predictions which
can be made on the basis of the octet model of SU;. By analogy
with isospin we can make the following observations.

A. Predictions from the multiplet structure

1. Classification. All new resonances or strongly interacting
particles which are found must belong to SU; multiplets. Once one
member of a given multiplet is found, all the other members of the
multiplet must also exist.
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2. Couplings. If one considers resonances between two perticles,
the multiplet structures which can arise are determined by the SU,
coupling rules. Thus, all resonances of nucleons and hyperons with
7- and K-mesons must belong to the multiplets obtained by com-
bining two (1, 1) octets; namely, the (0,0) singlet, the (1,1) octet, the
(2,2) with 27 states, the (3,0) decuplet and the (0, 3) decuplet.

B. Predictions of relations between matrix elements
1. Decays. The decay rates or widths of different resonances
belonging to the same multiplet are related by SU; coupling rules
involving coefficients analogous to Clebsch-Gordan coefficients.
2. Reactions. Cross sections for different reactions involving
members of the same multiplet are related by SU; coupling rules.
3. Selection rules. One may find selection rules which result
from SUj; couplings.

C. Symmetry-breaking effects
Relations may be found for processes involving interactions like
the electromagnetic interaction which are not invariant under SU,
but have simple transformation properties.

A detailed analysis of the possible experimental predictions
from the octet model is given in Appendix C.

3.7. THE MOST GENERAL SU; CLASSIFICATION

Let us now attempt to apply the group SUj to the classification of
elementary particles in the most general manner possible, without
specifically assuming the Sakata or octet model. We begin with the
eight operators (3.1) defined now in terms of their commutation
rules rather than the specific representation in the Sakata model.
We also identify the t-operators with isospin and the operator N
with strangeness. However, we no longer require that N=4B+S or
N=B+S; rather we simply require that changes of N within a
multiplet be equivalent to changes of strangeness. The multiplets
still have the same structure as determined from the Sakata model
and the classification of the multiplets according to the eigenvalues
of N as being integral, integral +3}, and integral—% is still valid.
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These can be obtained from the algebra of the operators without
assuming the Sakata model. The relations (3.3) for combining
multiplets are also still valid.

Let us now consider what kind of multiplets can be used for the
nucleons and the pions. The pions are bosons and have no selection
rule against their being created singly without changing or creating
other particles. Nucleons, for example, can simply emit an arbitrary
number of pions and remain nucleons. From this property of the
pions and the relations (3.3) we see that the pions must be in a
multiplet having an integral value of N. The nucleons are fermions
and because of baryon number conservation can only be produced
in pairs with antibaryons. The nucleons can therefore be put either
into a multiplet having an integral value of N or a third-integral. If
the nucleons are put into multiplets having integral values of N
then the antinucleons must also be in multiplets having integral
values of N. If the nucleons are put into multiplets having values
of N equal to an integral +4, the antinucleons must be put into
multiplets in which the eigenvalues of N are integral —}. Because
of the symmetry between particles and antiparticles, there is no
physical difference between a scheme where the nucleons are in
n+4 multiplets and the antinucleons are in n —} multiplets and vice
versa. There are therefore two possibilities. Either the nucleons
and antinucleons are in third-integral multiplets and the mesons
are in integral multiplets, or both the nucleons and the pions are
in integral multiplets.

If the nucleons are put into the simplest third-integral multiplets,
we obtain the Sakata model which puts the nucleons into a (1,0)
multiplet and leads to the relation (3.1) that the quantum number
N is just £B+S. One might look for other possible multiplets with
third-integral N as a different choice for the nucleons. However,
there does not seem to be any other reasonable classification which
fits with the known particles.

If both the nucleons and mesons arc put into integral multiplets,
the smallest possible multiplet with integral N (excluding the singlet)
is the (1,1) octet. The only feasible arrangement for nucleons and
pions in these multiplets is to put both the nucleons and the pions
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each into an octet as shown in Fig. 3.7. This is just the octet model.
In this model only integral values of N occur and N is the hyper-
charge Y=B+S. At the time of the writing of this book, the octet
model looks hopeful for a description of elementary particles and
the Sakata model has been discarded because of its disagreement
with experiment.

Note that in both Sakata and octet models, the mesons are in
integral multiplets, while the baryons are in third-integral in the
Sakata and integral in the octet model. The classification of bosens
can thus be the same in both models, but the classification of bary-
ons cannot. Note that if bosons should be found which are classified
into third-integral multiplets, their decay into any combination of
nucleons, antinucleons and pions would be forbidden in both the
Sakata and octet models. The same would be true for baryons in
integral multipletsin the Sakata model or in third-integral multiplets
in the octet model. Such particles would be analogous to the strange
particles in the isospin classification whose decay into nucleons and
pions is forbidden by isospin.



CHAPTER 4

THE THREE-DIMENSIONAL HARMONIC OSCILLATOR

4.1. THE QUASISPIN CLASSIFICATION

The energy levels of a three-dimensional harmonic oscillator are
known to be highly degenerate. One way of seeing this is to
note that the harmonic oscillator Hamiltonian separates in Cart-
esian coordinates into three independent oscillators all having
the same frequency. The energy of the oscillator then depends
on the total number of oscillator quanta present and is inde-
pendent of the distribution of the quanta between the three oscil-
lators.

The three-dimensional harmonic oscillator is also soluble in
spherical coordinates and has the characteristic degeneracy of
rotational invariance. However, there is additional degeneracy
beyond that of rotational invariance. There are also degenerate
states corresponding to different eigenvalues of the total angular
momentum.

Let us consider the possibility of describing this degeneracy in
terms of operators which, when acting on one state of the oscillator,
give another degenerate state. Such operators have matrix elements
only between degenerate states and must commute with the Hamil-
tonian. Commutators of such operators would also commute with
the Hamiltonian and therefore a Lie algebra should be generated by
these operators. Since we know that angular momentum operators
must commute with the Hamiltonian because of its rotational in-
variance, we should expect to find a Lie algebra greater than that
of angular momentum and including the angular momentum Lie
algebra.

57
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The harmonic oscillator Hamiltonian is
H = (P1 +p5+p3) + (x1 +x5+x3), 4.1)

where m is the mass of the oscillator and w is the frequency. The
operators which do not change the energy of a state are clearly
those which reduce the number of oscillator quanta in one direction
and increase the number in another direction, thereby keeping the
total number of quanta constant. These are most conveniently ex-
pressed in terms of the oscillator creation and annihilation oper-
ators. We therefore define
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These operators satisfy the boson commutation relations
=
[au, av] - 5#\1 (4.3)

[a;‘,, all= [a,, a,]1=0.

When expressed in terms of these operators, the Hamiltonian (4.1)
assumes the simple form

Zi: (ala,+a au)-hco(z ala +3) (4.9)

The angular momentum operators are given by
ly=X,p,—Dp,x, = i(a,al—a,a}). (4.5)

Operators having the form af,av clearly commute with the Hamil-
tonian and connect only degenerate states of the oscillator, since
they transfer a quantum from the v-direction to the u-direction.
As there are three possible values for y and v, there are nine such
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operators. These look very similar to the operators of the group
SU,, eq. (3.1) in the Sakata model of elementary particles. Although
the proton, neutron and A-operators are fermion creation and
annihilation operators whereas the harmonic oscillator operators
are boson operators, the commutation relations of the bilinear
products are the same. Again we can find one operator of the set of
nine which commutes with all the rest. It is just the Hamiltonian
operator (4.4) directly analogous to the baryon number B in the
case of the Sakata model.

Operators analogous to those of the Sakata model can be written
very simply by replacing the sakaton creation and annihilation
operators by corresponding harmonic oscillator operators (4.2).
However, the treatment of the Sakata model made use of an SU,
subgroup, namely isospin, by picking a preferred direction in the
npA-space; namely the A-direction. The analogous procedure
would be to pick the x;-direction as a preferred direction for the
oscillator and choose the SU, subgroup to be that of the two-dimen-
sional harmonic oscillator in the space defined by the coordinates
x, and x,. For this purpose it is convenient to define boson operators
for cylindrical coordinates

a; =(a,Fia)y2,

ag=4as, (4 6)
a', = (al +ia))}y2,
al=al.

In terms of these operators we can write

H=ho{a a, +a' a_+ala,+3}, (4.7a)
ly=ala_, (4.7b)
i_=ata,, 4.7¢)
lo=3aha,—ata)=1l,. (4.7d)

The operators a, and a_ are now analogous to the proton and
neutron operators and the operators 1., A_ and A, are analogous
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to the isospin operators. However, the A-operators are not the an-
gular momentum operators for the harmonic oscillator. They are
really the operators for the group SU, of the two-dimensional
harmonic oscillator and not those of the three-dimensional rotation
group.

Note that the operator J is proportional to the 12-component of
the angular momentum but multiplied by a factor of 1. Although
only integral values of the orbital angular momentum / can occur
in the harmonic oscillator, the quantum number A, can have either
integral or half-integral eigenvalues, depending upon whether / is
even or odd. The three 1-operators can be called quasispin operators
since they satisfy angular momentum commutation rules. By
analogy with isospin one can define the total quasispin operator

P=3A A+ 23 +25. (4.8)

In addition to the quasispin operators, one can define the re-
maining operators of the algebra by direct analogy with the
corresponding operators of the Sakata model,

B, =a'a,, B_=a'a,,
C,=aba_, C_=ala,, 4.9
N=14a" a,+a' a_—2a}ay) = i(ala,+ala,—2a}a;) .

Now that we have defined operators satisfying exactly the same
commutation rules as those of the Sakata model, we can use all of
the results for the group SU, obtained from the Sakata model to
describe the multiplets of degenerate eigenstates of the harmonic
oscillator Hamiltonian. We can plot multiplet diagrams in which
the eigenvalue of N is plotted against the eigenvalue of A,. The
quantum number N is one-third the difference between the number
of quanta in the 12-plane and twice the number of quanta in the 3-
direction. N=0 when the numbers of quanta in all three directions
are equal, N >0 when the number of quanta in the 3-direction is less
than the average number in the 1- and 2-directions and N< 0 when
the number of quanta in the 3-direction is greater than the average
in the 1- and 2-directions. The quantum number N therefore
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measures a ‘deformation’ or departure from spherical symmetry.

The ground state of the harmonic oscillator is non-degenerate
and clearly is a (0,0) singlet of SU;. The first excited level of the
oscillator has a three-fold degeneracy corresponding to a single
oscillator quantum which can be in any of the three directions. This
is just the (1,0) triplet of SU; corresponding to the sakaton. The
expected third-integral eigenvalues of N occur. Since the oscillator
quantum corresponds to the sakaton, the nth excited level of the
oscillator containing n oscillator quanta corresponds to a state of n
sakatons. Furthermore, since the oscillator quanta are bosons, a
state of n oscillator quanta must be totally symmetric with respect
to permutation of the quanta. The nth excited level of the harmonic
oscillator must therefore correspond to the totally symmetric SU,
multiplet obtained from the n-sakaton system. This is shown in
Appendix A to be the (»,0) triangular multiplet.

The levels of the nth excited state can be classified into quasispin
multiplets having all possible values of the total quasispin 4 from 0
to 3n, including both integral and half-integral values. The total
number of states in this (n,0) multiplet is 3(n +1)(rn +2). This is just
the number of states that one obtains by examining all possible
ways of distributing » oscillator quanta among the three oscillator
directions. The states of the (#,0) multiplet thus completely exhaust
the degeneracy of the nth level of the harmonic oscillator. The
degeneracy of the three-dimensional harmonic oscillator is thus
completely described by the classification of its states using the
group SU,;.

4.2. THE ANGULAR MOMENTUM CLASSIFICATION

The quasispin classification of the levels of the three-dimensional
harmonic oscillator is not the conventional one and does not display
explicitly the symmetry of the oscillator under ordinary three-
dimensional rotations. One normally classifies the state of the
three-dimensional oscillator by expressing the wave functions either
in Cartesian coordinates or spherical coordinates. In the latter case
they are classified by taking eigenfunctions of the orbital angular
momentum /. We know that if n is even, all even values of / occur up
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to /=n, whereas if nis odd, all odd values of / occur up to /=n. The
states in the quasispin classification are naturally related to those
in the angular momentum classification. In both cases /5 is a good
quantum number. The quasispin multiplets corresponding to
integral values of A have only even values of /5 ; those corresponding
to half-integral eigenvalues of 1 have only odd values of /5. Let us
examine the quasispin multiplets in the (n,0) multiplet correspond-
ing to the nth excited oscillator level. The two largest quasispin
multiplets corresponding to /=4n and /=%(n—1) just contain all
the eigenvalues of /; appearing in the /=n angular momentum
multiplet. Continuing in this manner, we find the expected one-to-
one correspondence between the eigenvalues of /; arising in the
quasispin and the angular momentum classification. However, for
all values of /; where more than one state appears in the (»,0) multi-
plet, those states which are eigenfunctions of the quasispin A are
not eigenfunctions of the orbital angular momentum /2 and vice
versa, since the operators A2 and /> do not com.nute.

The classification of states of the harmonic oscillator using the
group SUj; but using eigenfunctions of the orbital angular momen-
tum / is more difficult than the classification using the quasispin
operators A. There is no linear combination of the operators of the
Lie algebra (4.9) which commutes with the orbital angular momen-
tum operators, analogous to the operator N which commutes with
all the quasispin operators. There therefore is no simple way to
represent the multiplets on a diagram analogous to those used for
elementary particles because there is no quantum number analogous
to N to label the vertical axis. There is no simple way of defining
another quantum number in addition to /% and /5 to classify the
states in an SU; multiplet. The additional quantum number is not
necessary to label the states of a single three-dimensional oscillator
where the quantum numbers /* and I, are sufficient to classify the
states in any of the triangular (n,0) multiplets. If the quasispin
classification is used, the quasispin quantum numbers 2% and 4, are
already sufficient for the classification and the additional quantum
number N is redundant, being determined uniquely by the values
of A? and . Thisis no longer true in SU; multiplets which are not
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triangular where several states having the same quasispin occur
with different values of N. Such multiplets arise in the classifica-
tion of the states of a system of several three-dimensional har-
monic oscillators. In such a case, the classification of the states
using angular momentum rather than quasispin is difficult be-
cause several states arise having the same angular momentum
quantum numbers. The additional quantum number needed to
distinguish between them is not easily defined.

We thus see one essential difference between the SU, subgroup of
the group SU; and the R; or three-dimensional rotation subgroup
of SU,;. Although both of these groups have a Lie algebra consisting
of the three operators satisfying angular momentum commutation
rules, the geometrical and physical significance of the two groups is
quite different. The SU, subgroup consists of unitary transforma-
tions in a two-dimensional space which is a subspace of the three-
dimensional space in which the SU; transformations are defined.
The R 5 group is a group of real (not complex) rotations in the whole
three-dimensional space defined by the group SU;.

In using the angular momentum classification of harmonic
oscillator states, a different set of linear combinations of the eight
operators (4.9) of the SU; Lie algebra is more convenient.

lo=(@"%a,—ata.) =21, (4.10a)
liy= F(abaz+a'ap) =F(Cy++B;), (4.10b)
gir=—)6a%az =—/6A,, (4.10c)
g1 = —1/3(a3a¢—afiao) = —V—j(ci—Bi) , (4.10d)
qo=2abap—alta,—ala_=—-3N. (4.10e)

The eight operators now appear as the three orbital angular mo-
mentum operators and a set of five operators which transform under
rotations like the elements of a second rank tensor. The latter are in
fact just a linear combination of the quadrupole moment tensors in
configuration and momentum space. The operator g, is proportional
to N but commonly normalized to have integral rather than third-
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integral eigenvalues. The negative sign is chosen to give it the con-
ventional sign of a quadrupole moment. Since no linear combination
of the five quadrupole operators commutes with all the angular
momentum operators, we see that there is indeed no operator analo-
gous to N in the quasispin representation which can be simultane-
ously diagonalized along with /*> and /,. The commutation rules of
the operators (4.10) are

Lo 1:] =14, (4.112)
[, 121 =21, (4.11b)
[losqm] =mq,, (4.11¢)
[lssqm]  =)/6—m(mEt)qpss, (4.11d)
[90,9:1]1 = i3l/§lil > (4.11¢)
[91:9-11 = -3, (4.11£)
(42, 9-21 =6l,, (4.11g)
[9s2: 9511 = +3)21:, (4.11h)
(90,9121 =[9+1,9+21=0. (4.11i)

Let us now attempt to find one of the Casimir operators which
commutes with all of the eight operators. We first look for an
operator which is a quadratic form in the operators (4.10) by
analogy with the operator /? for angular momentum. Since the
Casimir operator must commute with all the operators (4.10) it
must commute with the angular momentum operators and there-
fore be a scalar under rotations. There are only two scalars which
can be constructed that are quadratic in these operators, namely the
total angular momentum /2 and the square of the quadrupole
moment. Examining the commutators of an arbitrary linear com-
bination of these two operators with g,, we find one particular
linear combination which commutes with all of them.
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C=36B+Y(=)"qmd-m] (4.12a)

=6 {ON*+1225+6(A+ A_+A_A,+B,C_+C_B, +
B_C,+C,B.)}, (4.12b)

(G g.1=1[C, 1,1=0, (4.12¢)

where the coefficient 5l is a conventional normalization factor.

4.3. SYTEMS OF SEVERAL HARMONIC OSCILLATORS

The algebra of the group SU; can also be used to classify the states
of a system of several harmonic oscillators. An example of such a
system is the harmonic oscillator nuclear shell model in which a
number of particles are assumed to move independently in a har-
monic oscillator poteuntial. The treatment for a single oscillator is
easily extended to this case by defining corresponding oscillators
for each particle and defining the operators of the Lie algebra by
summing over all particles. Let x,; and p,; be the coordinates and
the momenta of the ith particle and a,; and a}; be the corresponding
annihilation and creation operators (4.2). We can define the quasi-
spin 4;, the angular momentum /; and the quadrupole tensor g; for
the ith particle. Operators for a Lie algebra describing the whole
system can be defined by summing eq. (4.10) over all of the particles.

L =,Zl" (4.132)
4 :2,1“ (4.13b)
0, = Ei:q""‘ s (4.13¢c)
C=3%[3L2+§(—)"'Q,,,Q_m]. (4.13d)

We assume that the operators B,, B_, C,, C_ and N are now de-
fined as sums over all particles. The summing over all particles does
not affect the commutation relations of the operators and we again
have an SU; Lie algebra.






