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Fretace

I'T HAS ALWAYS SEEMED to the author that science is theattempt to uadersiand
nature, and that “understinding nature’ means somet hing deeper than
merely predicting the results of experiments: to “understand” means to
explain in terms of a few clearly stated underlying conecepts. This isa book
ubout the concepts underlying statistical mechanics, and about the expling-
tion of certain physical laws in terms of those concepts. The book emphasizes
the conceptual problems and the underlying mathematical structure of stu-
tistical mechanics, ruther than applications, Most books on statistical mech-
anics give an adequate treatment of techniques and applications; the reader
is referred 10 these books for information on the calculation of partition
functions, specific heats, ete. It is hoped that the reader of the present book
will come away with some understanding of why these caleulations work.

The central object in the theory of statistical mechanics is the N-body dis-
tribution function o (x, ), where x represents the “phase point™ for the
entire N-body system. Thus, any coherent theary of statistical mechanics
must give a clear answer to the question “What is the meaning of g7 As
discussed in Chapier 1, there are several widel ¥ held answers to this question ;
the different answers actually amount 1o different points of view toward the
scope of statistical mechanics. Statistical mechanics is sometimes regarded
as the study of macroscapic systems in terms of their microscopic properties,
sometimes as the study of time averages of mechanical quantities, and some-
times as the study of incompletely specified mechanical systems. The point.
of view adopted in this book is that statistical mechanics is the study of in-
completely specified mechanicnl systems: ag discussed in Chapter 1, this point
of view uppears to have greater clarity and usefulness than the other points
of view,

Having adopted, in Chapter 1, the view that statistical mechanics is the
study of mechanical systems in terms of incomplete information, we are led
to regard ¢ as a probability distribution representing the information which
we do have about the system, Probability theory thus becomes the basic
mathematical language of statistical mechanics: this language is studied in
Chupter 2,

il




The branch of probability theary known ps dqfovmation thepry deals witly
the measurement, avguisivion, wod ransmission of infoomation. 15 ane be-
ligves that stutistical mechunics is the study of systems in terms of incomplete
infarmation, then one is immediately led 1o try applying information theory
to statistical mechanics. E. T, Jaynes (see Ref. 4 of Chapier 1) wis the first 1o
estublish o clear and wséful conneetion Between infocmation theory and sta-
tistical mechanics, although several guthors prior to Jnynes speculated on
Gualitative connections between the two ficlds (see ez Rels. 15, 16, and 17
al Chapter 1), This book is based on the information theory approach o
statistical mechanies. The relevant portions of information theary are pre-
sented in Chapter 2.

Chapters 3 and 4 deal with the fundamental concepts of ¢lassical and
quantum statistical mechanics. Topies discussed include: Livuville's equa-
tion, statistical correlations, the significance of large munbers of particles in
statistical mechanics, the choice of an appropriate initial distribution, equi-
librium, the laws of equilibrium thermodynamics, thermodynamic entropy,
and the justification of the methods of statistical mechanics. Most of the
mathematical formalism of these chapters will be familiar to anyone who has
haed woeourse in statistical mechanics; however, it is hoped that the reader
will ahtain a deeper understonding of the wdeas behingd the formalism,

Chapter 5 deals with the fascinating and much-debated topic of irreversibil-
ity. Topics discussed include: irreversibility in classical and quantum statistics,
thee definition of & non-equilibrivm entropy, and the gonernlization (o non-
cipuilibrivm situations) of the séeond low of thermodynamics.

This book should be accessible to anyone who has learned classical mech-
anics (preferably at the level of H. Goldstein's Classical Mechanics), quan-
tum mechanics (preferably including Dirage notation), and thermodynamics,
Previous background in statistical mechanics is not essentiul, although the
reader might find such background helpful. The mathematical background
aequired by physics undergradoates should be adeguate,

The book should be of value to scientists and students who desire a hroad
understanding of statistical mechanics without being burdened by caloula-
tional details, as well as to rescarchers in statistical mechanics who desire
deeper insight into the foundations. Although this book is not a textbook, it
miay be uselul as a supplémentary text in statistical mechanios since most
extsting texthooks deal mainly with techniques and results and treat the con-
cepts only superficially. Philosophers and scientists interested i the role of
probubility theory and inductive reasoning in science, or in the philosophical
significance of irreversibility and the second law, may find the boak helpful.
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EHAPTER |

Whal is Statistical Mechanics

SUPROSE YOU MUST FREDICT the behavior of three billiard balls, given only the
approximate initial velocity of the cue ball, Or suppase vou nesd to caleulate
the radiutive properties of a hydrogen atom located in an imprecisely known
electromugnetic field, Again, you might be asked to predict the evolution of
a mwle of pas, given that at 1 = 0all the moleoules were on the left hand side
of the container, Or perhaps you wish to investigate the motion of a har-
monic oscillator, given only the approximate valve of the Epring constant,

What do these problems have in common? Well, for one thing, each deals
with 4 faicly common classical or quantum mechanical system. For another
thing, these problems do not appear in texthooks or courses on mechunics,
Mechanics deals with precisely specified problems: precisely specified initial
conditions, precisely specified electromagnetic fields, precisely specified spring
constants. The above problems are not of this sort; the complete information
required for a mechanical treatment is not given. Yet scientists must often
salve just such problems,

What should you do with such a problem? Should you just throw U your
hands and pronounce the problem unsolvable in the absence of complite
information, or would it perhaps be better to use the information which iy
Eiven in an attempt to make the most reasonable predictions as to what is
likely to happen (o the system? That is, would it be better 1o guess? The an-
swer, obviously, is that you should guess. The scheme which has heen warked
out for making such guesses is called sratistical mechanics, Mechunics, be-
cuuse it deals with mechanical systems. Statistical, because it deils with fre
precisely specified (or statistically specified) systems, and makes only im-
precise (or statistical) predictions.

The theary of mechanics (whether classical or quantum) o pplies only to
the idealized situation in which the precise initial state is known, and all
imternal and external influences on the evolution of the system are precisely
known. Now, the fuct that mechanics is an idealization should not hother
us unduly, since all physical theories are idealizitions of one sart or another.
But if problems arise which do not conform reasonably well to the idealiza-
ton involved in a particular theory, then one looks around for a different
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theory, Statistical meghanics is e Useory within which (e ideilized assimp-
tion of complete information is removed,

Let us make these ideas more precise. The state of the system will menn a
complete diseription of @ kystem at one ingbant of G, G o deseriplion
whichi is as complele and detuiled ns is permitied by the laws of physies. In
clussical mechunics, the state is determined by measuring the coordinates i
moamenta of all the degrees of freedom, and is represented by o point (g, .
Qs sos @re Pis PayoerpPe) in o 2fsdimensiomn] phose spuce, where f i the
number of degrees of freedom; m quantim mechanics, the state is deter-
mined by making precise measurenients of a complete set of commuting
abservables, and is représented by o Tumction ¥ 0ry, ga. oo g0l Ay i
suremient which determimes the precise state ol s guantum or clissical mech-
anical system will be called o complete measurement,

In this book, we will deal only with non-relativistic Hamiltonion systems.
That is, classical systems are assuméd Lo possess o Hamillonin Tunstion
Hgyooou Geiyy oo Prot) and 10 be governed by Hamilion's equations;
quantum systems are assumed (o possess @ Hamillonian operator £(1) iad 1o
be governed by Schroedinger's equution,

Mechanics is the study of the time evolution of the state of w system. 1L s
a scheme for predicting the precise state at ¢ provided only that the precise
state js known at some other time J; and that the Hamiltopian i known
bebween 1y and ¢, Thus, mechanies (whether classical or quantum} allows
us o predict wieh eerrafty the state sl ¢, i lerms of & complele measure
ment at £y and the Hamiltonian between fy and ¢, . Note that only in the
case of classical mechanics does (s scheme alltow us to predict with certainty
the outcome of all experiments perlfarmmed an e system at £, since Tor guan-
tum systems even a complele description does not provide o prediction with
eertainty of the owlcome of every possible experiment.

Briefly, secharnfes i the study a_,f" eontpletely specified systems,

Statistical mechanics is the study of mechanical systems o situations where
the description is incomplete. Tt is a scheme for maling reasonable predictions
about the outcome of experiments at £, in teems ofanincompletely specified
state at 5 and/or an incompletely specified Hamilionian belween tyand ¢ .
Such predictions cinnot be nide with certainty s all that statistical mechanies
will do is provide reasonahle goesses.

Briefly sraristical mechanies v the studvoof incomplerely specifted sysrems.

Thie viewpoint that statistical mechanics is the study of incompleicly spe-
cified mechanical systems has been stated explivitly by LG Tolman' and
others® 4 and (as will be discussed below) appears to be implicit in the

WL S otalistcal Meohanics 3

work of J.W.Gibbs, There ure, however; at least {wo other widely held
points of view toward the scope of statisticul mechanics: we will refer to them
a5 the macroscopic viewpoint and the ergadie viewpoint. Since this is a book
about conceprs, und since a first step in establishing concepls should be 10
agree upon whit subject it s we are discussing, it is approprigte o consider
the different points of view toward the scope of statistical mechanics,

The macroscopic viewpoint holds that statistical mechanics is the study
of macroscopic systems in terms of theie micrascopic properties. Put nnnlhc'r
wity, this viewpoint holds that statistical mechanics is the SIHI.1]|-’ of systems
having a large number of degrees of freedom, or even thut stalistical mechan-
fesis anly validd i the Nimiting (idealized) cuse of an infinite nuniber of deprecs
of freedom, For exmmple, Grad? states that *the single feature which distin-
guishes statistical mechanics from mechanics is the lurge number of degrees
of freedom™, Thus, in this viewpaoint, statistical mechanics 1s merely the
mechanics of nuny-body systems, This view hus it to recommend it: most
apphicitions of statistical mechanics have been 1o large systems; this view-
pelnt is casy 1o grusp; it does not involve the somewhat subjective notion

ol “lack of complete information”. However, the following paints shaukl
b noted ;

I} Systems occurring in nature have g finite number of degrees of freedonm. *
The idealization 1o an infinite numbér of degrees of freedom is sometimes
useful, bun situitions miiy arise in which the consequences of a finite number
of degrees of freedont need o be retaned withot, however, Boing over 1o o
r,:urzly mechanical treatment. For example, the statistical mechanical explunn-
uunE{ of many phenomena (such us {he scattering of light from density flue-
tuations in the atmosphere) require an analysis of the statisticn | fluctuation,
or vananee (see Section 2.1), of some physical observable : such phenomena
require Lhe consideration of finite systems, since statistical luctuations usuadly
vanish in the limit A — o, .

2) Problems such us the billiard ball, hydrogen ntom, and the harmonic
oscillator examples deseribed in the opening paragraph may actually arise.
ICone is willing to apply the farmalism of statistical mechanics only to larpe
systems, then one is unable 1o make any predictions for sucli pru[;lnm.w.

3y As will be seen in the remuinder of this book, at no point in the general
formalism. of statistical mechanics is the number of degrées of freedom

. E.‘nrll!_mmuu fuelds, whien reaied os nechunieal syslems, arg an excoption no ihis stane-
mcl}t. For instanee, an electromgnctic Held muy be thought of as i mechimical sysem
lawving an infinite nomber al degrees of froedom,
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required to be large. Thus, from a purely formal point of view, the restriction
to large systems appears superfliuous,

4} In theories taking the macroscopic viewpoint but nof the ergodic view-
point, the precise meining of the distributicn function g (1o be itroduced in
Chapter 3 for classical systems, and Chapterd for quantum systems] is
generally quite obscure. 15 o u probability distribution, and if so what is the
origih of the probability? How is o to be determined in specific situations?
Does p somehow represent the exacl mechanical stiale?

The ergodic viewpoint holds that slatistical mechitnics is the study of the
infinite time averages of mechanical ohseryables. For classical syslems, the
time average of u phise function gix) is delined by

3
glx) = lim -!—j g [x(e)) o,
vaw d Jo

where x is the 2f-dimensional phase point, and x(r) represents Uhe mechnnical

motion, An ergodic system is i system for which time averages are equal to

the stundard “ensemble’ averages af siatistical mechanics (see Chapter 3,

<o that time averiges may be caleulited, without finding the exact mation of

the systern, froin the standard distribution function farmalism of statistical

mechanics. For example, Truesdale® states that “the purpose of statistical

mechanics, Tor purposes af equilibrium, is 10 calculate time averapes, and
ihe ensemble theory is useful only as a tool enabling us to caloulate time
wvernges without knowing how to integrate the equations of motion™. This
viewpaint hus often been associated with the macroscopic vigwpoint, since
it has historically been supposed that only large systems ure ergodic, How-
ever, recent results’ indicate that the size of Lhe system is in no way related
to ergodicity.

Again, the ergodic viewpoint has much to recommend it: mucroscopic
MeASUrEments ire never instantaneous, so {hat measured values are always
fime ayernges (but not necessarily infinife time avernges); the meuning of the
distribution function p is clear in this viewpaint (p is merely mathemntical
device 1o help in the caleulation of time avernges);this point af view has fed 10
many useful and beautiful new results in mathematics and in the peneral
theory of mechanical systems, However, the follawing points should be

noted:

1} Real measurements are miade ever finfte tme intervals, Talimte tine
averages never apply to non-equilibrivm (i.e. Line-dependent) phenomenitt

-

it iy obvions from their definition that infinite time averages cannot (l
ar.:lvcs dlt‘pﬂﬂd on r. Thus (as is indeed stated above by Truesdale) lh: er, :dmk
viewpoint restricts statistical mechanies to the study of -:quﬂih;ium IE::m::
m:rlla. But the gt_:nr.-_ral l'n_rmnlism of statistical mechanics applics ]'rur:'tbml
e 1Iu non-equilibrivm situations. Restricting stutistical mechanics to .
llhr{um phenoment is analogous to applying Maxwell's equations :th
statie fields or applying Newton's laws only 1o stationary system.:; i

2) Evén within the Tramewark ol equilibriam phenomena, the theor
mlmwn as ergodic rheoremy) necessary 1o vindicate the :rgl;di:: vir.:wrs:]:!:
Wh‘-_':j]yml 1o hc csluhlrr.hl:ld. Hriefly, an ergodic theorem means any theorem

i ms-ls.tbhshcr.,nr partinlly establishes, the equality of infinite time average
il certum_"rnsumhlc averages” (see Chapter 33 1 seems that the onl : E o
tem [or which the necessary theorems have been established is the NFI:::-
hard‘s!:rh:m gas it a perfectly réflecting box?, and gven in this uuﬁc- ¢
Phj"i!mi:ilh must accept the result mainly on faith since the proof iiwalntu“
gopihis u:ulr:df wse of measace theory and differentinl peometey, N shmlrtll-ﬁb:
noted that Sinai” has proved that any hard sphere gas of lWH.ﬂl' PATE par-

3) Even if one restricts statistioal mechanics 1o equilibrium phenomen:
urlul wssumes that all physicully ressonable systems are ergodie, one .
still add probabiliy assumptions (of a fuirly wenk variety) to lh;: thﬂc?;«“iﬂrz
:rdcr I.O pr],}l the thcur;.r_ to the real world. The reason for this is quite
:ulxplr.. even if the system is ergodic, there are still certain exceptional h
::::nil moticns Inl phase space along which time averages and phnsun::m‘w.'r-

% ure not egual; e ergodic systems vxhibit 1] ire i :
el }aut anly on almast all, orbits. Thus, one must I:.:E:ITTI:];T;:;;E:T::E; Tt "T;
orhits are Mghly improbeble. So even if the ergodic theorems are 1 : mlnva
cannotl be used to reduce statistical mechanics to pure mnchﬂnics"‘;u:' o

N H:r'h'hlgcf:nsidcrud Ithu macroscopic and ergodic views, we will now discuss
! :d lnwpl:lml titken in th{.s ook, namely that statistical mechanics is the
udy of incompletely specified mechonical systems,

f 1} This viewpoint includes the mactoscopic view as a special cise, since
I * i i

;lr rﬁe syralmis are always ’"“’m".'““' y apecified. For example, itwould take an
" : 0 gi:u*. 1_|u1n: stuile ms.' working over a time-span of something like the ape
mrlic|un+ VErse ju:st IIF wiite down the mechanical initial conditions for each

cle in a mole of gas. The cost of the i ‘
_ puper involyed
i would no doubt
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exceed even the U.S. nationud debt! Thus we never possess complede informa-
tion about the initial stare of o macroscopic system. Furthermore, even if we
did possess complete Tinitial data, we would oL want to nse it because 1he
LxucL equittions of molion would be too cumbersome t solve und Because the
resulting predictions would be fur too detailed 1o be of any value, Thus, we
would choose to throw out some of the data in order to simplify the descerip-
tion,

2} Since duta about time averapes are i form of incomplete information,
this viewpaint also includes the ergadic viewpoint s a special case, but with-
out requiring the proof of any ergodic theorem.

3) This viewpoint applies to any mechunical system, including small ones,
for which the given information is less than vomplete. This viewpoint repre-
sents the broadest possible interpretation of the larmalism of statistical
mechanics.

4) In the author's opinion, the viewpoint taken in this book is pedagogic-
ally superior to both the myeroscopic viewpaint (which is conceptually wm-
clear, especially as regards the meaning of p) and e ergoidic viewpoim
(which is mathematically difficult). It allows one 1o treat simple, one-bady
and two-body systems within the framework of statistical mechanics: such
treatments have obvious pedagogicnl advantages. This view, especially an it
has been developed by E, T.Jaynes* using the ideas and techniques of in.
formation theory, unifies and simplifies statistical mechanics,

5) The view that statistical mechunics is the study of incompletely specified
mechanical systemis is somelimes criticized on the grounds that it is subjec-
tive (i.e. invalves the oh<erver), whereas suience is supposed 16 be objective,
Without getling into a discussion of whether ar not science is actually
abjective, the author would like 10 point out that this viewpoint is as objec-
tive as any physical theory van be expected 1o be. According to the operi-
tional phitosophy of physics, physical theories should depend npon the mey-
suring instruments of the abserver, Mechanics deals with the ideal cise af
perfect and complete measurements. Statistical mechinics makes predictions
based on informution obtained from imperfect measurcments, The predic-
tions naturally depend upon the nformation, i.e. upon the ICAsUring insiriu-
ments. The theary does not, hawever, depend on the subjective views of the
abserver: two ohservers, eiuipped with identical MEASUrIng instruments gnd
obtaining idéntical readings with these instruments, will make precisely the
sime stutistical mechanical predictions about the outcome of future mea-
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surements. For example, suppose that a concentration of gaseous 1/#9% 4
diffusing in a box of gaseous U, Observer A, whose measuring instroments
wre selsitive only to chemeal dilferences, will say that nothing is happening.
Observer B, whose instruments are sensitive to small isotopic mass differ-
ences, will soy thut diffysian js oceurring: The description is subjective in the
sense that it is different for the two observers, but abjective In the sense that
thee dilTerense deponds only on the measuring instruments available, Tt SCCTRG
repsonabile to espect thut the Proper statistical mechanical descriptions will
be different for abservers A and B,

6) The atatistical mechanical treatment of systems having only a few
degrees of freedom is sometimes criticized on the grounds that predictions
then become so highly uncertain that they have no physical significance. But
this argument, if necepted, would make it impossible for the Phyvsicist 1o deal
with such prablems as 1w hydrogen stom, billiard ball and hirmonic oseilli-
tor mentioned in the opening paragraph. Furthermore, statistical predictions
about small systems do not necessarily have a high uncertainty; whether the
systens by small or large, the degree of uncertainty in the predictions depends
upon the given information,

TH As will be seen in the remainder of this book, the viewpoint that sty-
tistical michanics is the study of incompletely specified mechanical systems
leads very naturally o the use, in statistical mechanios, of the mathematicn)
theory of infarmation, It js sometimes objected that this paint of view, as
developed using information theory, leads 1o no new physical results, Thisis
not true; a few of the new results obtained using information theory are
discussed in Sections 3.6 and 5.4,

A few historieal notes might be helpful. I Willard Giibbs (1839-1903)
founded statistical mechanics in irs present form (based on the Liouville
equation and the distribution function e3'% James Clerk Maxwell (1831
1879) and Ludwig Boltzmany (1844-1906) were principal founders of the
closely relnted and sometimes indistinguishable field called Kineric theary't,

lakinetictheary, one triestoderive ever ything from mes hanics, deemphasiz-
g statistical aspects as much us possible; stitistiog] concepts, when in-
troduced, are considered 1o be merely convenjent ways ol approximating 1le
exaet mechanics, The ultimate aim of kinetjo theary is to derive all of 1he
results of statistical mechanics, and in particular the laws Boverning macro-
scopic systems, from pure mechanics. In the statistical mechanical approach,
an the other hand, ong does not iry to justify statistical concepts in lerms of
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mechanics; instead, statistical concepts ure considered (o be un essential pail
of the theory, on a par with mechanical concapts.,

Kinetic theory, which wis well developed by 1865, was originally devised
to expluin the equilibrium propertics of gases in terms of the mechanicl
behavior of large numbers of molecules, The best known ‘result of this Kind
15 the kinetic theory explanation of the ideal gits haws. Maxwell and Boliz-
mann extended the theory 1o includé non-cquilibrium Phedameni i wisdly
inlerncting pases, the main resulis bueing the famous Boltzimann traiespor
equation and the Boltzmann H-theorem. The emphusis in kinetic theory has
always been on “explaining” the macroscopic laws by examining the mechan-
ical behavior of systems having many degrees of freedam, Although 1 was
always necessary to introduce probabilistic assumptions in order w cirry aut
the explanation, it was thought that these assumptions could be removed by
4 more complete analysis, For example, the justification Tor the use of muny
probabilistio assumplions was thought to lie in some form of er godic theorem,
amd it was thought that this theorem was likely to hold for large systems,
{As noted above, it is now believed that most systems are grgodic, but tha

this result doesn’t depend on the syster being lurpe; furthermore, ergodicity:

15 useful only in explaining equilibriwn phenomena, whereas the Bolizmann
transport equation is suppased 1o describe non-equilibrium phenamena;
furthermare, ergodicity does not remove the need for o probabilistic assump-
tion.)

Itis typical of kinetic theory that a certain “distribution funct ion"” g p )
15 used in an ambiguous way: on the ane hand, g, o) d g o pis interpreted
as the number of particles hiving their positions and momenta within the
small ranges d*q, d%p around the position vector q angd the momentum vee-
tor pi on the ather hand, f(q, p. 1) % @°p is supposed to be proportional to
the probability that a particle has its position and momentum inside d*g d*p.
Mow, the first interpretation says that /s o mechanical quantity, while the
second says that it is a probabilistic quantity. As will be shown in Chaper 3,
it is inconsistent to interpret the same quantity /in both ways: the distine-
tion between the two interpretations may seem small, but it 18 erucial, The
reader is warned to be on the look-out for this ambiguity when reading the
literature, since it arises in nearly every discussion of the Boltzmuann trans-
port equation,

Statistical mechanics, in the form presented in most books (i.e. based on
the probability distribution function g in phase space) was founded jn 1905
with the publication of Gibbs' classic Elementary Principles in Staristical
Mechanicx'®. Gibbs imtroduced statistical concepts us A basic ingredient of
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the theary with no attempt to explain these concepts mechanically; he thys
placed mechanics und statistics on an equal footing. Gibbs considered bath
equilibrinm and non-equilibrium phenomena to be within the scope of his
theory, although his treatment ol non-cquilibriom statistical mechanics is very
sketchy,

Giibbs considered his theory to be applicable to any miechanical system,
regardless ol its size. For example, he states (Ref. 10, P Vi) That “1he Taws
of statistical mechanics upply to conservative systems of any number of
degrees of freedom ... He even explicitly mentions the case of a single par-
ticle (Ref. 10, P 118): “But when N = 1, cases may occur in which thic
canonical distribution is perfectly applicable ... Thus, Gibbs did ot sub-
seribe to the macroscopic viewpoint of statistical mechanics,

Citbbs does not mention the ergodicity concept at uny point in his book.
In view of the fact that the ergodic hypothesis had been discussed by ather
writers for over thirty years, it seems safe to say that Gibbs did not consider
ergodicity to be relevant to statistical mechanics. Thus, despite the fact that
miny workers regard ergodicity as a necessary condition far the validity of
Gibbs' methods, Gibbs himself did not subscribe to the ergodic viewpoint!

Linfortunately, it is hard to tell from Gibbg' work just how he did justify
his own methods. It is clear, however, that he did not subscribe to either the
macroscopic viewpaint or the ergodic viewpaint, and that he regarded the
introduction of statistical ideas to be g fundamental assumption, not explain-
able in terms of mechanics,

Since the appearance of Gibbs® work, it has become evident that Gibibs'
formalism is more practical and more general than the kinetic theory formal-
ism. In fact, one can treat strongly interacting many-body systems only by
using Gibbs® distribution function in the N-body phase space; Thus, except
for the specialized case of dilute guses, the Gibbs' formalism has dominated
statistival mechanics since 1905, However, the concepts (as opposed to the
formalism) of kinetic theory have tended 1o be retained even though Gibbs
himsell’ rejected these concepts. Thus, a hybrid theory, using the statistical
formalism of Gibbs but the mechunistic concepts of Moaxwell and Boljz-
mann, has developed. As is to be expected, such a situation has led to many
paradoxes and to endless debates, The difficulty seems to be that mast pliys-
icists are, at heart, kinetic theorist » whereas the formalism of Gibbs refuses
1o yield to a purely kinetic theory interpretation. It is suggested by the author
that the appropriate resolution of this situation is that physicists should
reorient their intuitions along the lines of a truly statistical approach, and
that the way o do this is to adopt the view that statistical mechanics is the
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study of incompletely specified mechanical systems, This vigwpolnt seems to
be the only one which is both clear and ulso consistent with the Gibbs formal-
s, (It was pointed oul above that the macrascopic viewpaint does not give
aclear interpretation of g, whereas the ergodic VICWROINL IS inconsistent with
the application of Gibbs formalism to non-equilibrium phencumeny, )

From 1905 1o 1945, the Gibbs formalism (and especiully Gibbs® canonicul
distribution—see Section 3.9) was used to study such eyuilibeian problems
as phase transitions, specific heats, and molecular distribution functions at
equilibrium, During this period, most work on non=equilibrivm problems
was done within the framework of kinetic theory, and was based on the
Balizmann transport equation, This wark was valid only for weakly inter-
wcting systems (e.g. pases which upproximate the ideal pas), Euring this
period, a few workers used the Gibhs formalism (and especially the Liou-
ville equation—see Section 3.3) to study non-equilibrium problems. 1. Yvan '
derived and studied the so-called BEGKY hierarchy: these ire {he coupled
equations for the a-body probability distributions (1 = 1,2, ... N} which
arise by integrating the Lisuville equation aver ane or more particle co-
ordinates unid momenti,

since 1945, workers have used the Gibby formalism to carry out more
general investigations of non-equilibrium phenomena. 1.G. Kirkwood !
studied the assumptions needed 1o derive the Boltzmann equation Team the
Liouville eguation. Bagolinbaov'™ derived the Bolizinuin trunsport cquation
by imegrating Liouville's equation over the coordinates and momenta of all
except one of the particles, making two crucial assumptions about the mathe-
matical behavior of the solution to Liouville's equation, and making certain
Approximations appropriate o o weitkly interacting system. This work set
the stage for various extensions of the Boltzmann equation tomore general
systems. (See Reference 15 for an averview of Bogolinbov's work and related
work by others,)

It 1948, Shannon® established a new field of mathematics known as infor-
mation theory. Information theary, which is a branch of probability theory,
is widely used by communications engineers, and has been applied jin such
diverse areas us biology and psychology. Asits name indieates, informilion
theory is the quantitative study of information: its measurement, and its
transmission. IT one tukes the view that statistical mechanics is the study of
incompletely specified mechanical systems, then it becomes natural 1o by
applying the mathematicnl theory of information to statistical mechanics,
E,T. Jaynes®* seems to have been the first to make a cléar, quantitative connec-
tion between information theory and statistical mechinics, although several
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authors (see, e.g,, Refs, 17, 18, und 19) established o quitlitutive connection
priarto the work of Jagnes. A texibook by A. Katz? is based on theapplication
of mformation theory o statisticul mechanics. Texls by Landsberg™ and
Tribus®! developthe relutionship of fiformation theory to thermodynarmics.

In this book, we will adopt the view that siatistical mechunics is the study
ol incompletely specified systems. In addition, we will uge the mathematcul
theory of information. The relevant pottions of probability theory and in-
formation theory will be presented in Chupter 2.
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CHAPTER 2

Frobability

21 THE MATHEMATICS OF PROBABILITY

Tue pisTNeTion between mathematics on the one hand, and its applications
oranierpretations on the other, seems clear in most fields. 1t is not difficulr,
for example, to distinguish the formal theory of second order differentiul
equations from its applications in mechanics, cirouit analysis, ete, Unfor-
tunately, this distinction is not so clear in the case of probability theory, This
is partly due 10 the wide use of the language of probability theory in eVery-
day language (“random”, “chance", “event”, “probable”™, “certain®, etc),
and is partly due 1o the clogé historical connection between the mathemitical
theory and appliciations to such areas ps games of chance, population studies,
communications engineering, and statistical mechanics, In order 1o keep the
distinction between the formalism and its interpretations clear, we will pre-
sent the mathematics of probability separately from the interpretations of
probability. This section is about the eusy part; the mathematics. We will
discuss the interpretiytions in the next section,

For eoncreteness, we will illustrate the formalism by five simple examples.
We present these examples not for the purpose of clarifying the meaning of
probubility (this will be done, hopefully, in the next section), but merely to
aid the reader in grasping the mathematics, Since several of these examples
run throughout this section, the examples will be listed here for reference:

Example 1: One throw of u single die, with “even” or “odd” being the

event ol interest,

Example 2: One throw of a single die, with the number of spots being

the event of interest,

Exumple 3: Choosing *at rundom™ a number between 0 and 1.

Example 4: One throw of two dice,

Example 5 Ten throws of a single die.

Set Notation.  We assume that (he reader has some famitiarity with set
operations. The notation will be as follows:

{50 8xee} means the set whose elements, or members, are GivlEs e
Sets seed not bo finite, and they need not be countahle.

13
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H means the universal set, i.e. the sét containing all those elements * under
consideration in a given discussion.

& mesns the null sel, containing no elements.

& or &, means a nonsnull subset af 5.

{ e & means thiat the élement ¢ is n member of, or belangs to, the ser 4.

L ¢ & means that £ is not & member of 4.

&y = By, 0r 83 2 & means Lhat &, is a subsel of, or is contained ity &4.
That is, every £ e &, satisfies { & &,.

& means the compliment of &, i.e. the set con gisting of all the elements of &
satisfying & ¢ &,

&y w &y means the union of &, and &, i.e. the set of all g such that either
Led, or{ed, or both.

'y 1 &y means the intersection of &, and &, Le. the set of all = such
thitfed, and L e d,.

Finally, note the distinetion between the elemant £, and the sel &k We
write 0y & 7, but {(;] = 9. A set, such.as {£,}, containing a single element
is sometimes called an “glementiry set”.

The Structure of Probability Theory.  The theory is based on the abatract
notion of a random experiment. A particular random experiment fs defined
by specifying u sample space.”, field of evenis ¥, and o set of probubilities
defined on F. Thus, we speak of the experiment (4, F, P}, The postilated
properties of &, Fand P will now be given, Note that an ex periment (¥, ¥, P}
is @ purely abstract, mitthematical concept, and does not necessatily hive
any relationship to the word “experiment’ as used in sclence o in everydiy
language, '

Sample Spaces. A sample space 7 isa set of elements 2y, &y, ... This set
need not be finite or countable, The elements & e & are called oulcomes
Example: L Suppose that the experiment iy the throwing of a single die. A natural sumple

spuce s the set % = L/ 5, £ de faa ), Where' the puleame I i Yhe (hrow
reswlbed In g spots’,

Fiells of Events. A ficld of events means a collection F of subsels iy
By, coool & such that

LIf &eF, then &eF.

LIS eFand &;eF, thend, u &, ek,
Thatis, F means a collection of subsets (i, a “set of sets™) of . such tHhat
this collection has the properties | and 2 The members ol F are called
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events . Thus, any event & & Fis o subset of &7, However, it is not necessar-
y trve that every subset of 9 §s a0 event, i is 4 member of F. 11 can be
shown' that the field postulates 1 apd 2 iy

LIPS eFand £,eF, then &, n &, eF,
4. S eF,ie 7 is itself an event, called the certain event.
5. e F i 0is an event, called the impossible event.

Properties 2 and 3 imply that every union ar intersection of a finite number

of events is a member of F. However, if F contains an infinite number ol
events, then 2 and 3 do not insure that every infinite union or intersection of
events is i member of F. In this case we postulate that F is a Borel field, i.c.
we add to postulates | and 2 the posiulate that F contains every infinite
wnion and intersection of its members,
Example 1 fcontimed ), Suppose that we ire nol interested o the precise nuimber af spats,
but are fnterested only in whether the throw is even of vdd. & nitural cholee for F is then
F= &), whire & = Lfafs) isthe Yodd™ event, and & = 14000 i the
Heven™ gvent. This collection ¥ af four evenrs satisfies the field postutates | and 2. Note
that &% = &, &0 & = ST A = @ In applicatlons, any cvent |s said to DECE 1)
B eertmn wral if the ourcomie U ol ihe trial satisfies £ e &, I the die i thrown and the vui-
come {6 fy. then & and &' oceurred whereas & ind € did not oecur. Note that 2 oceurs
am every thal, whils & never occurs

Probabilities. A set of probabilities P means & numerical function of the
events &, defined for every & & F, and satisfying the following conditions:
M) =0 forevery s, 2.1

P = |, (21.2)

P& widly) = PIE,) + P(8,) whenever &, né; =0, (2.1,3)

Mote that P&) is a function of events, i.e. for every event & & F, a number
Pid) s assigned. A slight extension of postulate (3) is required in case K con-
tins an infinite number of events:' this extension will not be given here,
Postulates (13, (2) and (3) imply

D= P <), (2.1.4)

B =0, (2.1.5)

POT &)= P74+ Ry — P&y ), (2.1.6)
PE) + P&y =1. (2.1,7)

For the proofs, see Ref .
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Exumple 2. Let the eaperiment pain be the throwing of o single die, but suppose Huit we

are now intevested in which fuoe comis up, The nuural preseription of the exRperineng
(L F, Plist & = (£ fa); Flis the set of all possible substis of &7 M&) = Wit
where n b8 the mpmher of oulcomics in &, For intamee, e protsdbiliy than the number of
spats will be less than orequal 1o 2is P {1/ /1)) = 2/6 = 113, Nothing In the nathematica!
Fermalism requires us to use this particular probability assignment Po this AARTEn e
seerms, however, o be the most “reasonable” 1o most peaple, The reader should convinece
hinmesell’ that this assigninent of (5, ¥, £ satisfies he field ittt | and 2, ps well as ihe
probubllity postalates (13, (20, and £3), As oo ilustragion of (6), foie thal {60 Irgplias

FOARI IAGLD = PAUALD 4 PUAAY = PUAS A AAD
= PUAAD + FURAD = POAD
=26+ 2/6 — /6= 1/2.

The same result Tollows miove directly from the faet hat

OB (i) = (A

Conditional Probability. The conditional probability of &, assuming ,,
also called the probiability of @, piven &, is defined by

Pdsnd)

P&y | &) = 218
(] P(d) { ]

provided P(&,) # 0, and is undefined it P(4,) = 0. Thus
P8y ) = P8, P(EL), (2.1.9)

which says that the probability that both & and &, will occur cepuals the
probability of & given &, times the probability that &, will occur. If
&y = &, then (8) implies P, (£,]4,) = 1, which says that the probability
of any event &, implied by &, given that &, occurred, is 1. If on the other
hand &, m &5 = 0, then P(&:|&,) = 0, which says that the probability of
any event &'y excluded by &, given that &, occurred, is D,

Example 2 (cantinued), From (8Y,

PAlfifsfvoddy  FiLAD _ e
P {odd) Plodd) 12

1
P | 0dd) = =3
Flodd | 1)) =1,

& (odd | 1£:0) = 0.

Expressions such as PA& | odd m | /) are undefined, since odd ry |/} is the impossible
avent,
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Statistical Independence.  Two events &, and &, are statistically imdepun-
S B8, A8 = P P8, (2.1.10)

ieif the probability of both events occurring equals the product of the
probability thit &, will oceur und the probability that &, will oceur. From
(8), stutistical independence of &, and &, implies

Lo |E) = M8, and PS80 = P8, (2.1.11)

The first of these relations says that the probability of &y given that &y o¢-
curred equals the probability of &, alone, ie. the probability of &, is the
sumie whether or not it is given that &, ocourred, If &, and &5 are not stafis-
tically independent, they are said to be correlated,

The word independence has many distinet meanings in science and mathe-
matics: linear independence, independent variables, dyinamical Indepen-
dence, statistical independence, ete. In statistical mechanics, statistical (-
dependence is sometimes confused with other types of independence. The
redder is advised 10 use this word with care,

Example 2 (cantinved), The events | 7, | and “odd” are correlated, sinee PULA] [oddy =13
while 11,1} = 1/8. In facy, in this experiment two events are statisticully independent
anly il one of them is % or @,

Random Variables. A random varfable (rov.) i any numertcal function of
the outcames £ of a random experiment.* Random variables will be denoted
by capital letters X, ¥, ... Thus anr,v. Xisa relationship between the out-
enmes { of a random experiment (%, F, ) and the corresponding numbers
2N Note that probabilities are numerical functions of the events &, defined
forevery & € F, while anr.v. is a numerical function of the outcomes L, defined
for every L€ %, The notation {X{¢) = x}, or simply {X = x}, will mean
the evenr consisting of all the elements ¢ satisfying the condition that X0
equals the number x. Note that X{{) is a mumber, but that [¥(0) = x} isan
event, j.¢. a set of outcomes. An extension of this notation is illust rated in the
following example.

Exaniphe 2 {contibucd), Define the rv, X and ¥ by
Xy =1, (2117

B =150
Fif)) = [ ; (L1115
1 = 3,4, 5, 6).
® Muore precisely, a Y. I8 any numerical function Y2 which ls *measrabie with respect
to the field ¥, i.e. which satisfies the condition thit |X = x} be o event for every choice
af the imber ¥, In practice, all “reasonable™ functions X(C) satiafy this requirement,
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Then the events [X = 3, [X = 2), [Nadd], | ¥ e 1) wre gloen by

=3 = |A],

¥ =2 ={hh=1¥=0,

[Vodd] = [fiAih].

¥ = 1] = {fdnful-

A diserete rundom varlable s one whose range (e the sel ol numbers Y2

corresponding to all possible outcames <) is entirely discrete, The rv, (12)
and (13) are discrete. A continwous random variable is one whose range is

entirely continuous. In this book we will consider only discrete or continuous
v,

Example 3, Suppose we pick 1 number random” from the interval 0 = & = 1 of (he
redl axis. For this experiment, the natusi] chaide ol 5, F, ) in: o is the set of real nittm-
bers § between 0 and 12 F condisis of gl Lebespue muisirable® subsets of ') #18) is the
Lebesgue measure® of the set &, Define the rv. X, Y, U,V by
XD =1, t2.0.04)
iy =33, (L1.15)
0 0=L<05
uil) = 2010
I s <$= )
i 1
u(——- i€ —t n= I.ﬂ....)
Fil) = A " .
moil=0u.

(2,117

Thin X and ¥ are continuous r.v.. whils Ui Voare disereto,

Functions of Random Variables, Consider an r.v, X und a numerical fune-
tion glx), such that g(x) is defined for every number x in the range of X,
Corresponding to the outcome &, V takes on the numerical value XY{2), We

* Readers unfamilar with micasure Uieory nied nof be alapmed by the terms “Lebusgue
measurible™ and “Lebesgue meusure™. Tn praciice, the tenm *Lebesgae mensirnble” muay
be repluced by “reasonable”, and 1he term “lebesgue measure™ mby b replaced by
"Wolume™ or length™; rentlers unlamiliar with measure theory ure urged ta make this
replacement wherever these terms aoeur, I s worth nuting that every open or closed inrer-
vul on the real axis is neasurable, and has o easure il o the fength of e ivrval;
every ilisenete set of pounis on e el dxiy is e sirabla el s vieasiine 2o, The reason
for this réquirement that 1 consisi only of the Lebesgoe meadirable sary trather then wlf
setsd ix thit Uhis fnsures that i1 1y penssible to define on F o set of probabilitics satislying
postubntes (1), (2, and (3},
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then define the function g(X) of the rv, ¥ by the following stdtement:
vortesponding 1o the outcome ¢, (he numerical Value of p(X) is 2.
Nute thut g(X) assigns o number 10 every outvome C, and is thus a random
viriable,

Example 2 {continued), Defining X by (12}, the pew vy, 0F = X% jakes on the viles
Uiy =11 s =4, LAY =9 we,

Example 3 (continued}, 'The rv, defined by (14) und (1 ) are related by ¥ = X2 The ny.
defined by (16 und (17) ure related by 17 = i 17} where PV =0 for V='0,2,3,4,..,,
and gil) =1,

Probability Distributions. The probability distribution of an rv. X is,
roughly, a statement giving the probabilities associated withthe various values
af X. Wewill consider the cases of discrete and continuous r.v, separately,

(1) Diserete rov, The probability distribution of a discrete rov, X i the sel
of probabilities of the events {X = x, . for the varions values x, in the ringe
of X We will denote the probability distribution in any of severn] ways:

BUX = x}) = ply) = p;. (2.1.8)
Exinmple 2 (continued), The probability distribution of the v Vdefined by (13) is
= P(Y = 0p = PO AN =13,
P = PUY =10 = PSS = 203,
{it) Continuous r.v. The probability density (or probahility distribotion)
ol & continuous v, X means the function
plx) = lim Plx< X< x+ A z
Akl dx

{2.1.19)

Thus. for small Ax, ofv) 1x is approximately the probability of the event
(¥ < X < ¥ Ax). By (19) and (1), o{x) is non-negative.

Examigle 3 (eontinuee ). Defining the vy, 1 by (151, we have
Py <Y€+ dl) = Pllyv<ttg s Ayl
=Py <t e Yot M=yt dy - -

Ulsing (197,
T I
el'= tim X2 : W . (21,201
Ay il i 2 A

Warning: The words “distribution™ and Vdensity™ are used in many wiys:
nuss distribntion, particle distribution, velocity disteibution, and in uddition,
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probability distribution. Unfortunately, these radically different concepts
have certain similarities (e.g. the “velocity distribution” is superficially like
the “probability distribution for velocities™), and there is a widespread
tendency to gel them conlused. Since probabilistic concepts are al the heart
of statistical mechanics, it is essentinl, if ane is to huve any hope of grasping
the subject, to maintain the distingtion between these different ideas,

Mormalization.
(i) Discrete rov: The events (X = x;} ave disjoint, i.e.
¥ = xJmi{X =x}) =0 ( #]).

Furthermore, the event {X takes on one of the values ¥ in its range] is the
certain event &, Thus, by postulates (2} and (3},

I = Pty = P{{X 1akes on one of the values v,})
PUX = >} u {X = 5} u )
PUX =x.]Y & PUX = x3)) + -1,
Tpx) =1, (2.1.21)

or

where the sum is tuken over all vilues x, in the range of X, Equation (21) is
the mormalization condition for discrele rov. Using similar reasoning, we sec
that the probability that X will fake on one of the values x e an arbitrary
set M of possible values s

P{XIOeM)) =Y pix) (2120

agn M
Example 3 (continued), The prabability distribution for the ro. P defined by (E7) is
I I
=PV =ifl=— = ——tln= 1,2

ola) [ i = ] i

pll) =P =0)=10,
Llging (233, we dee explicitly thot

M =1,

As an example of (22),
POV = 2)) = pith 4 pll) + pi2) = 2/3.
{ii) Continuous r.v. By an argument similur to that used in obtaining (21),
we can show that the probability distribution of any continuous rov, X must
sutisfy the normalization condition

Jolx)dx =1, (2.1.24)
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where the integral is taken over the entire range of X. Analogously to (22),

Plx, =X = x:})= I plx) o, (L1.25)

from which P ({X = x|) = Ofor any number x in the runge of the continuous
R

Example 3 (continued), We can explicitly check the normalimtion of the probabilily
ilatribistion (200

Waing {23) and (200, with' ¥ given hy (15),

L% ]
(0 € ¥ 5 0S)) = f o) dy =071,
L]

_ i
Pl0S < thwf oty dy = 10,29,
mAa

Probability Distributions for N Random Varinbles. Consider two rv, X
and Y, defined on the same experiment (&, F, P). (Henceforth, it will be
asstmed thad all vy, under consideration are defined on the same experiment
(¥, F, P).)

(i) Discrete rov, Consider the events (X = x) n [V = v}, i “X tikes
the value x, and ¥ takes the value y,"". The joint probability distribution of ¥
and ¥ means the set of probubilitics of these joint events, Any of the follow-
ing notations may be used:

P([X = XY = .}',r” = plx, y) = py- (2.1.26)

The extension to the case of N rov. X, ¥, ..., Z is straightforward; in this
case, the probability distribution is written p(x,, ¥y, ..., 2) of pyy. 4.

Example T (continped ), We can find the joint distribution of the rov, (003 and (13 as fol-
fevwa: By (9],
LY =X Y = y]) = PUX= %] | [¥F= 3P Y= ).

Thus
1213y = [}§ (x=1,2; y=0

O =0 (6=234,56 y=0

(O =0  fe=1,2; p=1)
(R = 16 (5 =3,4,56 »=1)

Py =

1 Habaos (0124)
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(i) Continuous r.v. Consider {he events {x < ¥ <y 4+ i) n [y< ¥
< ¥+ Ap}, and define the joint probability density by

glx, »¥= lim lim Plle < X5 x4 dyln [v< V=4 "]-'-:'!_
Areal) da=alh . i.."-' r,’_l'

(2.1.27)

Thus, o (%, #) Ax Ay is (approximately) the probability that X is in the range
X< X<x+dy,and ¥ is in the range v < X < v + Ay, The extension
to N rov, s stradghiforwiard,

Example 3 {continued), Eredining X and ¥ by (143 and ¢ 131w see thit the folng distributbon
galisfics

el =0 for po g2 (2.1.28)
Thus gls, ¥hec dip = &%), whirs M) i the generalized Ninetlon knwvwn as the "M

della funciion™.? Choosing the proporionality consiant In suCh & way that g (x, ) s
necmilized on (0 < x < 1, 0 5 9= 1), we bl

el ) =d o — 2, (2.1.29)

The form ¢ (e, ¥ ac & (v — fixli s typical of "functionaly related™ rovy, be, continpous rv.
refated by ¥ = f{¥),

Reduced Probability Distributions. Given two ryv. X and ¥V with joint
probability distribation p Lx. ) o p (v, ¥), it is common 1o cill the proh-
ability distribution for ¥ alone or for Falone u reduced distribution obiained
from the joint distribution, As will now be shown, we can express any reduced
distribution in terms of the Joint disteibution,

(i) Discrete rv. Using postulate (3.

PX = x])

PHX = x) n {¥1akes on one of its values))

E Py (50, 1),
¥y

Thus, the probability distribution for X alone is
Pl = 3 pay (e ). {2.1,30)
¥y

(Concerning the notation: whenever there is any possibility of confusion,
we will distinguish probability distributions for different rov. by appropriate
subscripts. For example, we denote the distribution for X'by py( ).) Accord-
ing to (30), we “reduce” pey (i, sum over all vahiues of ¥l in order to obiuin
Px- The extension to N discrete v, is siraightforward.
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(1) Continuous r,v. By the reasoning used in obtain ing (30),
oalx) = [ oyy (v, 22 dv, (2.1.31)
where the integral is taken over the range of ¥,

Example 3 (cantinved), The joint distribution (299 for the eV (1) and (15) leads to

1 -
el y} = f iy - e BJ' Ay - n\.."lj'_l {x + v'fj'“ dy
(1] 4
al . - -
= ’ (x4 J}p-' &= yiddy = l:-,,"l.l-f + -»,‘-"ILI.";I”I
al
= 112\ fy,
in ngreement with (20),

Statistical Independence of Random Variables.

(i) Discrete r.v. Two discrete rov. X and ¥ are statistically independent if
the pair of events [ ¥ = x), [¥ = ¥y} is statistically independent far overy x,
and 1. Thus, using (10), the condition far statistical independence of X and ¥

L FAY =3} n{Y =y =PUX=xDP{X =y}, (2132

o Pay (s 1) = pal) pal), (21.33)

for all (xe. 1), By (1), statistical independence of X and ¥ implies
PX=x} | {Y=ph)=P(x = xh (2.1.34)

for all (vy, a). This says that the probability distribution for ¥ s the same
whether or not it is given that {¥ = y;} occurred. We say that two r.v. are
correlated if they ure not statistically independent. Note that X and ¥ are
stutistically independent only if (32) holds for all X and yy; if (32) holds for
some (x;, ¥} but not for others, then X and ¥ are correlated.

Example 2 {continued). The r.v, defined by (12) and (13} are correlnted, since
PUX=5||[F=0)=0 and P(X=15)) =1/5,

Example 4. Two dice are thrown, The experiment (%, F. £ is traditionsll y defined ay fol-
lows: The outcomes, denoted £, are *the first die shaws {spots and the seeand die shows

A sputs™. The sample space 5 is the set [Avfiz - faifiz = fus) . The field F eonsisty of

ull subsets of 7, The probabilities of the elementary events (i} are 1736, and the prob-
nbilities of oll vilier events then lollow from postulute (3); for exainple,

Fllfuhall = B A © L))
=Pl + PO = 1036 + 136 = 1119,
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For this experiment, it s convenient to define the ry,
XUip =i, V=], (21,35

L., X is the number of spots showing on the first die, and ¥ is the riumber sliowing on the
second. The joint distribution of X and ¥ s Ple = 3036 L= 1,2, ... 6). Since
PUX = x) || V= gl) = b = FUX = ), the fv, defined by (35) jre sbatintienlly
independent. Thus, the two dice are uncomeluted, 10 e two dico weris cotinected i e
way, for instance by pluing them tegether, the probabiity assignment given above would
not seem reasonable to most people, A reavanable probability assigoment for the connected
dice would obviously lead 10 correlations betwesy v and ¥,

(i) Continuous r.v, Two continuous r.v. are statistically independent if (he
pair of events {x < ¥ < y + def, {r< Y < y 4+ Ay is stutistically in-
dependent for every choice of x, v, A, and 1 vidyand Ay need not be smuall).
Thus, the eandition for statistical independence iy

Px < X <x + Ax) r {y< ¥<yp+40))

=Pllx<X<x+ADPlyr<¥<y + Ayl (20.36)
Using (19) and (27), equation (36) implics
Qxy (6, 1) = py(x) oyl y). (2.1.37)

Ecpuation (37) in turn implies (36), so that (37) is the necessary and sufficient
condition for statistical independence of X and ¥, Statistical independence
of X and ¥ implies

Pllx<X<x+dx)|{r<¥ey+ Al = P(lx < X< x + Av)).
(2:1.38)

which says, roughly, that the probability distribution for Xoas the same
regardless of what is given about ¥,

Example 3 (continued). The r.v. (14) and (15) are correluted, since the value of X difor-
atieed ¥, Cases of this type, in which ¥ is funetionally related 1o X, ure thi extrenie G-
site of sttistcal independence,

Expectation Values and Moments. We define the expectation value of a
fupction g(X) of the rv. X by

(X)) = gyf—n.‘l i) (2.1.39)

for discrete X, and by

XYy = [ glx)olx) dy (2040
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far continuous X, The operation { ) is a linear operation, i.e. for arbitrary
numbers a; and functions g,

Lo\g (X)) + awgs (X)) = a, {g(X)) + a, CeatX)y. (2.1.41}
The nth moment m, of ¥ means the expected vilue of X
piy = nih moment of X = (X", (2.1.42)

The mh central moment of X means the expected value of (X — )

nth central moment of X = (X — )"y, {2,1.43)

The first moment i, (or simply m) is called the mean value of X, the second
central moment is called the varianee of X and is usually written o2, and the
square root of the variance is called the dispersion. Using (41), we cin
establish the wseful relation

o = my —my o= (X~ (XY (2.1.44)

The following Tehebychell inequality brings out the significance of m and o
foranyx=>1,

P{IX — m| = 20)) < 158, (2.1.45)

i.e. the probability that X differs from its mean by more than s is less than
V= Proof: IT X is continuous, then

o = Iq.c = m) plv) dy = J‘ (¥ = m)* plx) dx
| % =]z pwr

= x‘n"-l. o) iy =fa? p [{|.¥' — ) = sol),
o= | =

The sume reasoning goes through if X is discrete.

The mean m is a measure of the location of X since hy (45) we are not
likely o find X 1ao far from m; for example, the prabability of finding v
farther than 10a from m is less than 0,01, Note, however, that m need not
be u highly likely value of X in fact, m might be a point at which the prab-
ability distribution is zero. The dispersion o is & measure of the uneertainty,
or statistical spread, in X7 if o is small, then, by (45), X is very likely to be
found close 1o m. A better measure of the spread is the relative dispersion
ajmy, since quantities measured in the lab are vsually of order ni,. Thus,
almy <4 1 meins thi the spread in X s small on the lab seale.

W

RS L
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Example 2 {continued). Defining X by (13}, we obtain my = 15, oy = |57, and iiing
(44), o* = 2.20, 'The relutive dispersion is a/m, = 0,43, 50 the spread in X s sather large,
In this example, the menn value m, = 1,5 is not o possible yulue of X,

The following moment theorem gives an interesting connection between the
moments of an r.v. and its prabability distribution: (he probability distribu-
tion of an r.v. is uniquely determined by its moments o, if they all exist and
are such that the serics X, 5! converges absolutely Tor some nymber
# # 0. For the proof, see Ref. 1. Thus, in “most" cases (nomely, thase cases
satisfying the conditions of the theorem), the moments of an v, uniguely
determine its probability distribution, For the mathematical procedure by
which we can actually find the probability distribution function from its
moments, see Rel, 1.

The extension of these ideas to the case of N r.v. X5 ¥iooo, Zs straight-
forward: we define expectation values ¢g (X, ¥, covn 200 By atalogy with (399
and (40), the moments aremy, o o= (XL ¥ ZY and the complele set
of moments determines a unique distribution,

ﬁveﬂ_gusnf Random Variables. Consider & r.v, Ny Vas o, Xpall detined
on the same experiment (%, F, P}, Their average value, defined hy

L=(¥ 4+ X4 4 XN, (2.1.46)

is wlso an r.v,, since £ is a function g (X, , ..., Xy) of the random variables X,
I the X} are all statistically independent of each other, and if they have a
common mean m, and variance oy, then the mean and variance of ¥ can he
shown to be!

Ky =m, (2.1.47)
X — )2 = 6iiN. {2.1.48)

Thus the avernge of'a set of N statistically independent r.v. X (all having the
same mean and variance) has the same menn us 1he Xy, buta vaciance which
15 smaller by a factor N~ thun the variance of the At

Example 5. A singhe die is thrown jen tmes, 17 we arg Interested in the averape Gl thése
ten throws, then we must et the experiment be ten 1hrows of the die, e, nosinele wial
I ten throws, The “reasonable” (1o miast peaple) specification of (5, F, #) 11 as follows:
a single vutcome isa sequence [ = ({0, 40, e 00y hen £ means “face e ip
e the fth hieaw™s & 0 the set of all such sequences; F i all possible eollesiiong of such
sequences; the probability of any eleimentary event 19] 15 6~ Y%, and the probiibitig of iy
event & @ F 1s the sum of e ook bilithes <f all the dilleront elementury events [[] = o,
Defing the teo mve X e = 1,2, .., 10) by X% (5 = number of spots abtained on the
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#ih theew, The X are siatistically mdependent, with mean 3,30, variance 2.29, and rela-
tive digpersion 043 (compare Bx. 2, p, 260, The average of ten throws is the ry,

Fi2y= 00 i‘ Xy,

By (47 and (48), the mean, varfance and relative dispersion of ¥ are
(N = (X1 = 3,50,
UX = 3.5)%) = 2.29/10 = 0,229,
relative dispersion of X = ,/11239/1.5 = 0137,

Although the relative dispersion in the outcome of a single throw is large (it is 0,433, the
relative dispersion in the average of ten throws s anly 0,137, 1 relative dispersion” is in-
terpreted as “uncertainty", this sayvs that there is less uricertainty fin the averape uf ten
Hitows than there is i lhe ouigome of one (hrow, which sounds readanable.

Equation (48) implies that the variance of the average of N statistically
independent r.v, (having comman mean and varianes) approaches zero as N
upproaches oo This is one version of the so-called Jaw of large numbers, 1f
“variance" is interpreted as “uncertainty”, this says that the avergee of @
large number of rv. (having common mean and variance) is almost certain
to be equal to the mean of one of the rv.

22 THE INTERPRETATION OF PROBABILITY

One of the nice things about mathematics is that it s ¢lear-cul ; it is casy to
be clear about objects (such as ¥, F, und P in Section 2.1) which one just
inyents. The previous Section was pure mathematics: the section was based
on farmal assumptions, or axioms, about the abstract objects &7 F and P,
and the development consisted in defining new objects (such as random
viriahles) in terms of (4, F, £) and deducing relationships between the ob-
Jeets thus defined. Now, this is all very nice as far as it goes. The trouble is,
it dovs not go fir enough': the mathematical formalism tells us nothin i bt
the real world, Unfortunately, when we try to learn something sbout the
real world, we find that things become maere difficult.

[ order to apply probahility theory to the real world, we must fnterpret
the objects appearing in the theory in terms of human expericnce. Thie
axiomatio preseitation of the previous Section does not constitute such an
interpretution, Since the mathematical theory of probability is erected Entirely
an the postuluted properties of ., F, and P, the most cconamical way 1o
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proceed is to find an interpretation of %7, F, and P: the interpretations of

all other objects in the formalism will then follow. The problem is that there
exist at least four popular interpretations of (%, F, £), and innumerable
variations within each of the four. Furthermore, it seems that each inter-
pretition containg an ireeducibile element of obscurity of cifcularity,

The interpretation of the sample space & and the field of events F is
reasonably straightforwird. The space & is coonposed of all those outcomes
(or “statements”, or “states", or “objects™) of interest in a given real world
situation. For instance, ift we are interested in which apple will be drawn out
of a burrel of apples, then the apples are the elements of 7 : il we are inter-
ested in whether Smith will have an automobile accident during the nex
twelve months, then & contains the two elements “Smith has an accident™
and "Smith does nol have an aceident™; il we are interested in (he state of o
mechanical system, then & consists of all possible states of that system : if
we are interested in the sequence of results obtained when a dieis thrown ten
times, then & contuins one clement for sach possible sequence of ten throws,
An event o is then a set of such outcomes, and F iz the collection of all such
Sel1s oF,

The rub comes when we try 1o assign & real world meaning to the probabil-
ities £, What does “the probability #(8) of an event & mean? There L
to be at least four different answers, which we will classify as:

I. The empirical, or frequency, interpretation.

2. The probable inference, or inductive logic, interpretation,
1. The subjective, or degree of beliel, interpretation.

4, The elassical interpretation.

It appears 1o the author that the second 1nterpretation is the mast useful in
statistical mechanics, although there is much to bé said for the lirst inlerpreta-
tion. The third interpretation is probubly not useful in the physical sciences,
and the fourth is just a special case of each of the other interpretations, In the
author’s opinion, none of these Tour interpeetutions iy either correct or -
correet; rather, each interpretation is applicable (or correct, ar useful) in one
context or another. Arguments which purport to show the correciness or in-
correctness of 4 certain interpretation are unalogous to arguing that New-
ton's second law is the “correct™ interpretition of second order differential
equations, whereas cireuit theoty is an “incorrect” interpretation.

We will now discuss the Tour inderpretations,

The frequency interpretation of probability identifies the probability of an
event with the fractional number of times the event occurs inan infinite series
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of separate trials. That is,
Pay = tim "2, (@21)
N T

whore (e ) in the number of times & aceurs in o trinls of the experiment under
consideration. This interpretation gets its name from the fact that m(8)/n s
called the “relative frequency of accurrence of & during # trinks”. This point
of view was fiest formulated by Veon,? and is supparted and discussed in
dipth by the physicists Von Mises® and Reichenbach,®

The frequency interpretation is genernlly considered 1o apply to situations
i which it is possible ts carry out a large number of random trials of the
experiment under consideration, The precise meaning of “randem”™, when
it is used in this context, is not quite clear, but the word means roughly thit
the seqguence of outeomes must not show any regular pattern.

Suppose, for instunce, that we are interested in whether or not a throw of
wsingle die will yield an odd number of spots. The event & of interest is then
“odd", and (according to the frequency interpretution) P(d) is simply an
abbreviation for the relative number of times the result *odd" comes up in
air infinite number of “random™ trials, As an illustration of the word “ran-
dom™ in this context, cach of the fullowing sequenves of outcomes represeity
triaks which are sot random:

| e ) B B i RN, 18
(1,2,3,4.56,1.2,3.4.5.6....).

As another example, consider an insurance company executive who is inter-
ested 0 whether or pora man, chosen ot random feom all U.S. males between
the ages of 30 and 35, will die in the next 12 months, Here, the expeciment con-
sists of choosing at random one person from the set of LLS, males between
30 and 35 years of age, The event of interest is “the man dies in the next
12 months". The probability of this event is then the relutive frequency (1),
where #is the number of men chosen at random and n(d) is the number of
these men who die in the next 12 months, As an example of the word “ran-
dam”, the selection procedure would not be considered random if each of
the men seloaled hod epilepsy.

I1he experiment under considerntion is such that a large number of random
trials of the experiment can be carried out, then it is possible (according 1o
the frequency interpretation) to make an empirical mewsurement of P{&) by
simply repeating the experiment a large number of times (say # times). The
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ratio p(d)/n is then regarded as an experimental measwrement of the theoret-
ical result (1), As is always the case in selence, the theoretical resull is an
idealization (in this case the idealization nssumes o = @) of the actunl ex-
perimental situation,

One motivation for the frequency interpretation is the desire to give an
empirical meaning to probabilitics, so that P(5) becomes an objective, ob-
servable property of the system under consideration. For example, according
to the frequency viewpoint, £ (odd) is an experimental property of any die,
Just as the volome and maoss are properties of the die. Tn order 1o make i
measurement of the property 1 (odd), one simiply peeloeis o lacge number
of random throws, and notes the value of i (odd)/in. The measurenent be-
comes more and mare precise as n is chosen lirger and larger.

The main logical difficulty with the frequency inferpretation appears 1o
lie in the condition of randomness. This condition is supposed 1o mean that
the trials are independent in some sense. But in precisely what sense? The
statement that the sequence of sutcomes must not show any pattern doesn't
tell us anything until we know exactly what is and what is not @ patiern, If
we interpret “randomness” as “statistical independence of successive trials”,
then we ire being circular: statistical mdependence is meaningless until prob-
ability has been defined. If we regard “randomness™ to mean that it is im-
possible to predict the ontcomes of future tials From the results of pust
trials, then we hove gotien away from a purely empirical view of probability,
and the frequency interpretation becomes just a special case of the inductive
lopic interpretation (to be presented below),

In addition 1o the above logical problem, there are two severs resteicticng
on the applicability of the frequency interpretation: (u) this interpretation
applies only to situations in which it is possible 1o carry out a large number
of trials; (b) even if a large number of trials is possible, the frequency inter-
pretution says nothing about fmdividie! trials,

As an example of restriction (a), the frequency interpretation does not
apply to such questions as “will there be a miclear war?” Since there is only
one history of the humun ruce, it s unfortunately not possible to cirry oul
more thian one trial relative to this question,

As un example of restriction (b, suppose that a large number of trials with
# particular die has led to the conclusion that, for this die, P (odd) = 0.6
(apparently this is an unusual die), According to the frequency interpretiation,
P (odd) = 0.6 is just an abbreviation for the statement that “in a long se-
quence of random trials, 60%; of the throws will be odd™. This statement in
itsell says wothing ubout what will happen on the next throw, That is, aecord-
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ing to the [requency interpretation, probability theary merely relutes various
properties of frequency ratios in Jong sequences of trinls, and says nothing
about the omeomes of individusl trinls, To make the situation more dri-
matic, suppose that P (odd) = 0.999, According to the frequency interpreta-
tion, this simply says that 99.9% of the throws will be odd, and says nothing
about what will happen on the next throw, If we are asked to prediet the out-
come of the next throw, given only that P (add) = 0.999, and if we hold a
strict frequency interpretation of probability, then we can only answer “the
throw will be either even or odd; if a more precise prediction is desired, |
will need 1o know the mechanical initial conditions of the system 50 thot [ oan
solve NMewton's second luw and thus predict the final state™. Again, a piire
frequentist would be entirely uninfluenced in his smoking habits by statistical
data showing that P (cancer | heavy smoking habils) & P (cancer | ahstin-
ence from tobaceo), since the frequentist acgues that probabilities are not
applicable 1o individoal trials, 1t appears from this example that pure fre-
quentists may have o shortened life expectancy.

According 1o the probable inference interpretation, or induetive logic inter-
pretation, probability theory is the formal expression of inductive reasaning,
This point of view was first formulated by the economist Keynes,® and is
presented in detail By Jefries™® and Cox. " Jaynes'® has recently made an
important contribution to this viewpaint, and a connection between this
viewpoint and the frequency interpretation.

In deduetive logic, we derive consequences as logical implications from
statements which are asserted, or postulated, to be true, For instance, we
postulate Mewton's laws und thén deduce the consequence that o projectile
acted on only by a eonstant gravitiational field undergoes parabolic motion.

In the case of inductive logic, we begin with a general statement {supiested
by experience) which seems reasonable but which is not asserted to be true,
and we then support the validity of, or partially verify, this statement hy
establishing (experimentally) the truth of some of its implications. For ex-
ample, we purtially verify Newton’s liws each time we observe o projectile
undergoing parabolic motion in a constant gravitational field. We cannat
prove {i.e. deduce) Newton's laws from such observations, since the parabalic
motion of & projectile or of any number of projectiles does mor logically
imply Newton's faws. But our confidence in Mewton's laws is inoreased hy
such observations, wiod thus we sity that we “induce”™ (not “deduce™) New-
ton’s laws from the observations. Clearly, induction is just a high-class way
of guessing. Much scientific reasoning is of this inductive type: in fact, we
establish and support all basic scientific laws anly by inductive reasoning,
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The inductive logic viewpoint of probability halds thut probability theory is
simply the farmalism for this inductive mode of reusoning,

In deductive logic, every stutement is either true or false. Thus, 1o indicate
the status of a statement ¢, we need only two symbols: one for “g is true” and
one for “g is false”. In inductive logic, statements may be trug on the basis
ofthe given data, or fulse on the basis of the given data, or somewhere belween
these two extremes. That is, a statement ¢ may be entitled to only partial
assent on the basis of the given datw. Thus, the formalism of inductive logic
must allow the status of a given statement to range over u continuum of 1ruth
values between “g is true” and “q is false”, According to the inductive logic
viewpoint of probability theory, Plg) is just the quantity which accomplishes
this. That is, this viewpoint holds that, given any data D relative to some ex-
periment under consideration, and given any event & relutive to the same
experiment, there exists a unique probability P(d) which represents the in-
ductive logical status of & on the basis of D, The extreme case P(&) = |
means & is certain on the busis of DY, in othér words, D implies ¢, The
other extreme, POF) = O, means 0 implies that & is false™. Intermedinie
values, 0 < P(&) < 1, then apply 1o the case (which is the cise usually en-
countered in scientific inductive reasoning) in which D does not imply
either & or its negation,

According 1o the inductive logic viewpoint, the data D uniquely deter-
mines the probability assignment P: for a given sample space & and hield F,
and for given data D relative 1o (7, F), every observer will assign the same 2.
We will give the actual method of determining £ in Section 2.4, Henee, the
inductive logic viewpoint is not a subjective (i.e. relative to the observer)
viewpoint. On the other hand, this viewpoint is not purely abjective (i.e. rela-
tive only to the object), since probabilities depend on the given data.

For example, in the experiment of throwing o single die, £ (even) = 12
is not regarded as a property of the die itself, but is instead regurded as a
property of the die and of the given information. If the information is thit
the die has 6 sides, with i dots on the /th side, then the appropriate assignment
15 P {even) = 1/2, while if the information is the above statement in addition
1o the information that the die is weighted in such a way that anly = 1,2,
or 3 can come up, then the appropriate assignment is P (even) = 1/3. Two
observers will assign different probabilities to the dic experiment if (and only
if) the given datu is different for the two observers, As a more dramatic ex-
ample, consider two observers who wish 10 muke bets on the next oulconie
ol a die experiment. Onie observer knows only that the die is an ordinary six-
sided die, while the other knows the exuct mechanienl inbtinl conditions
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(initial mechanical state of the die, air resistance, elastic properties of the die
and rable, ere.) and is able to solve for the éxact motion and can thus predict
that the next outcome will be, siy, 4, The first observer assigns the prab-
abilities P{{f}) = 1/6 (i = 1,2, ..., 6) 1o the next trial, while the second
observer assignd P = 1, POLAD = 0 (i # 4).

The main drawback (if we choose to consider it o deawback) to the tndac-
tive logie interpretation is that the Y probability of o given the data D' is not
an experimentally measured number, but is simply o staténien) about the
logical status (or “reasonableness™) of &, Thus, it appears thut the word
probability remiing a primitive undefined term in the inductive logic inter-
pretation. This is not surprising, since in the formalism of deductive logic the
truth values reue and false are also undefined.

The inductive logic viewpainl applics to o broader cliss of situations than
does the frequency viewpoint. We can assign inductive probabilities even
though the trials are not random, and even though a large number of trials
is impossible. Furthermore, an inductive probability is not merely a deserip-
tion of a frequency ratio over a long series of 1rials, but is instead an assertion
about a single tial. For instance, £ (odd) = 0.999 says not only that it is
expected that 99.9% of the throws in a long sequence will be odd, but alsp
that it is highly likely, or quite reasonable, that the mext throw will be oddd.
At induetivist will be influenced in his smoking habits by statistioal data on
smoking and health,

To summarize: the inductive logic viewpeint holds that probahility theary
i5 the formalisin to which we résort when we lack sufficient data to make
deductive inferences. Probability theory becomes the foemalism for describ-
ing situations in which the data does not imply a definite outcome. The prob-
ahilistic deseription is objective in the sense that it depends not on the ob-
server but only on the experiment and on the observer's data,

We will deseribe the remaining viewpoints more briefly, since they do not
seem to be of significance in the physical sciences.

According to the snbjective interpretation, probabilities represent degrees
of belief, so that P(&) is relative not only to the experiment and 1o the given
data but also the inclination of the person whose degree of belief that prob-
ability represents. Probability theory then becomes the scheme Tor establish-
ing consistent relationships between different degrees of beliel. For example,
given adieand data D, observer A might assign P (odd) = 0.4, and observer B
(who happens to feel more favorably inclined toward “odd™) might assign
Pioddy = 0.7 The theory of probability then obligntes A to assign Pleven)
= (L6, and D to assign Pleven) = 0.3, Several outstanding mathematicians
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(e.g. E. Borel and B. Koopman) hold this viewpoint. Reference 11 cantains a
collection of fundamental essays in subjective probability theory,

The classical interpretation is not really a separuie interpretation: we in-
clude it here mainly for historical completeness. The classical interpretation
seems to have been the only explicitly formulated intérpretution from the
time of the first systematic use of probability theary around 1650 (inconnec-
tion with the widespread infatuation with games of chance in 17th century
France) until the first formulation, by Venn in 1886, of the frequency inter-
pretation. The classical interpretation holds that probability theory applies
anly to situations in which the set % of outcomes £ has suflicient symmet ry
that no grounds exist for preferring one oulcome over another. The prab-
ability P(&£) is then defined as the ratio of the number of outcomes in the
event & 1o the number of outeomes in -

number of ¢ such that & e &

P =
number of £ e &

(2.22)

For example, in the case of the die, the symmelry between the dilferent
possible outcomes 1, 2, ..., 6 seems 1o leave no grounds for preferring one
outcome over another, Thus, it seems reasonable to assign equal probabilities
to each side, and hence the probability (2) to an arbitrary cvent .

We can consider this interpretation as merely a special cuse of any of the
first three interpretations, where ane establishes symmetry by different means.
For example, in the case of the die experiment, if a long sequence of throws
results in a relative frequency of 1/6 for each side, then the frequency inter-
pretation leads to (2); if the given data contains no evidence favaring any
outcome aver any other, then the inductive logic interpretation leads to (2);
if' the observer feels just as favorably inclined toward any one outcame us
toward any other, then the subjective interpretation leads to (2).

At this point, it might be a good exercise for the reader to go back over
the formalism presented in Seetion 2.1, interpreting the expressions and con-
cepts in terms of the relative frequency and inductive logic viewpoinls, For
example, the frequency viewpaint interprets (2.1.11) {the conduction fur
statistical independence of &, and &,) a8 saying that the relative frequency
af & in a long sequence of random trials is the same as the relative frequency
of &, in the sub-sequence consisting of outeomes in which & 3 oceurred : the
inductive logic viewpoint interprets (2:1.11) as implying that the da 8,
oceurred" s irrelevant 1o predictions made about &, .

According 1o the viewpoint adopted in Chapier 1, statistical mechanics is
the study of mechanical systems on the basis of incomplete data, Predictions
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about incompletely specified systems cannot in general be dedictive predic-
tions; for imstance, it is impossible to predict with certainty the precise num-
ber of molecules in a given sub-volume of u container, given only the total
energy, total volume, and 1otal number of moleculés in the container,
Statistical mechanical predictions contain an element of uncertainty, and are
bused on inductive reasoning, Since the formalism for inductive reasoning |s
probability theory, it follows that probability theory forms the mathematical
backbone of statisticul mechanics, Thus, as far ns statistical mechanics is
concerned, the natural {i.e. useful) interpretation of probability is the induc-
tive logic imerpretation. “Probability™ will be understoad in this sense
throughout the remamder of this book.

28 INFIORMATION

Suppose you are given a set & of possible outcomes £ in some physical ex-
periment. Initially, you do not know which outcome will occur. Now a
Friend tells you " the outcome is £, ", Your friend has given you some informa-
tiom; it would be useful to huve s quantitative measure of this information
In this Section, we will discuss such an information mensure,

Information theory'* ='* is the quantitative study of the acquisition, pro-
duction and transmission of information, The theory was founded in 1948
when C. E.Shannon introduced a useful quantitative measure of the missing
information in a probahility distribution.'* During the pust two decades,
information theory has grown into a broad, highly developed body of know-
ledge, with ramifications in communications engineering (to which the theory
was ongimilly applied), psychology, biology, physics, and pure mathematics.
In this book, we will discuss only those aspeets of information theory which
are pertinent 1o statistical mechanics,

It we seeept the view, proposed in Chapter 1, that statistical mechanics is
the study of mechanical systems for which the given information is incom-
plete, then we are naturally inclined to try applying information theary o
statistical mechunics. Maore generally, information theary coneepts should be
relevitnt to any field in which inductive probabilities are useful. The reason
i5 that inductive probabilities arise whenever the given information is not
sufficient to permit diductive inferences; any theory which purports 1o study
information gquantitatively is likely 1o be useful in such a situation,

Returning to the problem posed b the opening paragraph of this Seétion,
let us put the guestion in a more quantitative form. Suppose that your
original state of knowledge about the outcome is represented by the prob-
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ubility assignment PY. For simplicity, assume that % is finite, so that the prob-
ubility assignment can be given by the numbers PYIZ ) = p? (1= 1,2, ...,
Your friend now presents new datu which changes your state of knowledge
1o POEY) = poli= 1,2,..., 4) (In the example given in the apening paras
graph, the new daty gave the exact outcome: more generally, the new data
might only purtially specify the outcome). The problem isto find o guinifa-
tive measure for the information provided by the new data,
Thus, we seek & quantity

T(PPYY = Tpy, oy oois Pai By 05y oo D) (2.3.0)

which represents the information content of the probability assignment
(Pry -y Py when the prior probabilities were (p, ..., p%). We will call this
quantity the “information in P relative to P, or simply the information.
Note that the information, as defined here, is dependent on fvo schemes
(&, F, PPYand (+, F, P} having the same sample space & and leld of events F,
but different probahility assignments.

The problem of determining a reasonable measure of information content
is one of the basic problems of information theory. C.E. Shannon' was the
first to solve this problem. However, Shannon (and most su bsequent aurhors)
stated the problem in a farm which was somewhat different from the siute-
ment given above; the solution to the problem pased by Slunnon was that
the measure of the arssing information in a sinele prabability assignment

g ohbay } iﬂ .
(afice ~k X plnpr® (2.3.2)
where k is a positive constunt, Shannon's measure (23 suflers from the defects
that it cannot be consistently peneralized from discrete to continuous prob-
ability spaces, und when it is (non-rigorously) generalized, the resulting ex-

pression —k [ p(x) In plx) dx (233

is not invariant under a change of variables x < y = y(x). Our formulation,
on the other hand, will lead 1o an expression for L(P; P9) which does not
sufler fram these defects,

Now, ane cannot just conjure up a theory of information out of thin air.
If we wish to find an expression for £ (#: 77}, we will lave 1o begin by assum-

* Informabion thearists ofien refer to 0P P as an enropy; expression (2) 18 ols ofen
calléd an enfrogy. We will reserve Ui word esteopy for & mone specific wwe inoslatisienl
mueshunics,

** Al Jogunithms are taken to e base ¢,

Prabatility 37

ing some reasonable properties for £(7; £9). Proceeding in this way, we will
prove g unigueness theorem of the following form: if we postulate Hhst
L(P; ") his certuin preseribed (und reasonnble) properties, then T{P; Y
neccssirily has the esplicit form F(P; P%) = --+ An alternative (and less
satisfactory) way of proceeding would be 1o simply postulate un explicit
mathematical expression for £, and then show that this expression has prop-
erties which should be expected of an information measure. The difficulty
with this approach is that it would leave us in doubt as to whether the
postulated expression is the only one having the stated properties. The
unigueness theorem approach will be used here,

We seek 4 function of the form (1), defined for any pair of probability
assignments P, P on a finite sample space &, It is reasanable to assume that

FUPyyoeny Poi PV ooy pr)is 8 Bontinuous funetion, (2.3.4}
and

IIII“"'I ] -"I.H_H --v-ﬁ"n l"ir’ﬂip?l -u.P?,u--PEHn-PE':

- prl ] ""-.Fll "-1FJ- --1-”;4:,.“?- --uPEr H'1P':| “"'IP::]l {2'3'51
anl
TP, PY={. {2.3.6)

Postulate (4) says that a small change in # and P? chanpes the information
by only & small amount; (5) says that the informution does not depend on
the manner in which the outcomes are liabeled ; (6) says that no information
is obtained if the final probabilities are the same as the prior probabilities,

For any pair of integers n and n, such that My =, the expression
Tny ooy Uny 0, 0, 08 Ui, oo /ngd represents the infarmation obtiined
when the number of equally likely possibilities is reduced from iy toon. Ttis
reasonnble to assume that

FQUng o, Vi 0y s, 05 Hag,y ., Vi) is an increasing
function of ng and a decreasing function of #, for any jn-
tegers i and my such that m, =, (2.3.7)

Postulate (7) says, for instance, that the Information obtained upon reducing
the number of equally likely sides on a die from 6 to 3 s greater than the
information oblained upon 4 reduction fram 6 to 4.

Finally, acondition known as the composition rule will be needed. Suppose
that the sample space & is divided into two sub-spaces Syo= Ly b))

4 Hobgin ((324)
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and Fy = {{,4,, ..., {,}. The sub-spaces &, , %, ure events (i.e. vollections
of outcomes) huving fnnl probabilities

fo=p +-+p oand gp=pg oo+, (2.3.8)
and prior probabilities
ar=p7 4=+ p® and ¢f =plii 4 o4 0 (2.3.9)

The final probabilities of &), given that £, € %, (i.e. given that &, oceurred —
compare (2.1.8)) are PU{LID ) = pilg, (0= 1, ..., r), and the prior proh-
ahilities of £, given %, are P LH#0 = pllgili=1.....r) Similarly,
the final and prior probabilities of ¢, given &, are plg. ({ = ¢+ 1, ..., )
and P?J"-?[; (f = r+ 1,....n)respectively. Now, we may give information about
the outcame either by specilying the probabilitics p, voes g tlireetly, ar by
specifying the probabilities g, , ¢5 of the sub-spuces #',, %, and then giving
the conditional probabilities p/q,, p,/q, within these sub-spaces, These two
alternatives are shown dingramatically in Figures 1 and 2. We now postiilate

![P‘] ' ++EFPF|.PP-||I |.-|+.--|FJ_|,;P?| *rrinjPE-l-lr*“lpg}

[ 0
= I(g,, !‘h:fi"ll-ffh “+ f(f"—- anen &1 L - "E'P‘)

i g g gl
L]
+ 43 r(fﬁ‘-. LS L E{T) (2.3.10)
iy 2 2 i

Postulate (10) asserts that the amount of information in the scheme of
Figure 1 equals the amount of information in the equivalent scheme of Fip-
ure 2, and that furthermore the right hand side of (10} is a reasonuble ex-
pression for the information in the scheme of Figure 2, Thus, the basic iden
of the composition rule is the assumption that the information in the scheme
of Figure 2 is given by the sum of the informution [ {1+ 431 91, ¢) concern-
ing the first step (i.e. concerning which sub-space occurred), plus Lhi weighited

Figure 2.3-1 Dhagram ol the probability assignment (py, ..., o)
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Figire 2.3-2 An aliernative way of describing the nrobahbility assignment shown in
Figuire |

(with weighting fuctors ¢, and g,) information concerning the second slep,
This seems reasonable if you think about it awhile; at least, the right hand
side of (1) seems more reasonable than any other ¢hoice of an expression for
the informition in the scheme of Figure 2.

Uniqueness Theorem. Assume that I (p,, ..., p; pl ..., pl)

exists for any pair of probability assignments 2, P® on a

finite sample spuce 7 = {Z,, ..., ¢}, and assume that [

sillisfies the postulates (4), (5, (6), (7), and (10}, Then [ s
necessarily given by

Fipyseoon oz DY vy ) = & S py In (pfpl),

where & is a positive constant. {23.11)

The proofis in Appendix A. Thus, (11) is the onfy expression having te
mtuitively reasonable properties (4), (5), (6), (7), :m:.ﬂi[}}. For simplicity, we
will henceforth choose & = 1.

Expression (11) applies to the case of a discrete, finite sample space 7. In
cise M is diserete but infinite, the obvious peneralization of {11) is

(P Py = ¥ plndppl), (2.3.12)
=l

i the information in an infinite scheme (py, py, .0.) s defined as the limit
{as i -+ w) of the information in the finite seheme [
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It is not difficult to find a reasonable generglization of (11) o the casd
that the probability ussignments 2 and P9 are both contintious. Lot & b the
segment {@ < x < b} of the real axis, let F be the set of ull Lebesgue measur-
able® subsets of & and assume that P and P° are continuous probability
assignnents with probability densities p(x), p%(x), **

Divide # into segments by means of the partition or “net” R R T
Xp=b), and let Ay = x; — x-p and &, = {x-, <x < v} The prob-
abilities

ME) = J. plx) dy = o(x,) Ax,
% (2313

PUE,) - J‘ o) dy = (k) Ay,
#
then form a discrete set, with inlormation

Jooy = Z P (&) In (PN PUEN] = X lx) Ax In [l ()]

As the net becomes finer, the approximations hecome copualitivs, and
approaches the limiting valog

TP PYY = [ alx); 0%(x)] = r olxiin [—Lﬂ] dx. (2.3.14)

o "x)
From the manner in which we obtained (14, it is reasonable to take (14) as
the information in the probability assignment plx), relative to the prior prob-
ability assignment p"(x). Equution (14) may be generalized in an obvious wi y
to the case that & is un N-dimensional continuum.
We will now present a few simple propetties of the information measures

(11) and (14); hopefully, these properties will further convince the reader
of the reasonableness of (1) and (14).

Far ¢ither the discrete or continuous chse, (M P =0,
with equality if and only it 2 and PY are identical, {2.3.15)

Frouf: For any positive number 1, In y = 1 — ¥ with equality only m
y= L. Letting y = p,/p;, we obtain

Splalpipy = E(p, - ply=0

* Hee footnole page 18,

** It may be worth noting, for the sake of matheimatical clurity, it probabdlicy dessitp s
used here in a slightly diffetent sense from that given in Seclion 2.1 In Section 2,1, ‘we
defined pix) on the range of some v, X, Here, we defing pix) directly on ihe sample
kpace 7,
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with equility only il P and P° are identical, For the continvous case, set
Vo= gl fee), Property (13) says that we obtain information whenever we
learn something new, ie, whenever the fival state of knowledge P differs
from the initial state P9,

In the discrete case, if p, = &, (= 1,..., n; k fixed) then
FOP: Y = 1n (1pd). (2.3.16)

Here, 4y 1s the Kronecker delta (0 0§+ k, 1 if i = k). In deriving (16),
i ln(pyp) at p, = 0 is defined by

I (P—:j) = lim {p, In (ﬁf.-)} = {. {2317
i Mo v n/

Property (16) says that the information content of the statement *“, occur-
red” depends upon how strongly the prior data P? indicated the accurrence
of 5y A1 P implied £, (e, if py = 1), then the new statement contains nothing
new and hence £ is zero. If P° assigns only a small probability p! < 1102y,
then the statement is very informative and hence I is larpe.

In the discrete case, if PY is given by a set of , equally
likely outcomes, and P is given by a subset of n equally
likely outcomes, then T(P; P = In (1o/n). (2.3.18)

Property (18), which follows by diveet substitution into (11), sivy that any
statement which reduces the number of equally probable outcomes from ag
Lozt contains In (ngfn) units of information. Larger reductions correspond to
larger amounts of information. A similar result holds for the continuoiis
case

In the discrete ease, if (for any i) pi = Oand p, # 0, then

(P PYY s infinite, (2.3,19)

The infinity arises from the term p, In{p/0) in (11). Thus we obtain an
infinite wmount of information upon being told that an event {£,) which had
been thought impossible is actually possible. From another point of view,
(19 stutes that £is undefined whenever the new data is incorisistent with the
prior data.

IF P s continuous and P is discrete, then 1 (P; P2 is in-
linite, {2.3.20
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This result follows from substituting plx) = p, 80y — ) inta (14), Prop-
erty (20} implics that an infinite gmount of infarmation is needed 1o pick a
single point {or a countable setof points) out of a contingm.

For continuous probability assignments Pand 22 F(P; P7)
is tnvariant under o monotone one-to-one transformation

Mare precisely, letting P und P9 be described by the densities p(v) and p%(x)
in terms of x, and by a{y) and g% ) m terms of ¥ = glx), and defining

L P A% EI o) In |'~E:-I‘J—rf i,

e,
ML ] ~ /
AP P°) = I iy In [—[ﬁi] dy,
i 6% )

{21) asserts that I, (2; £°) = 1, (P; P?). The proof will be left 1o the reader.
This property insures that the information in the probability nssignment P,
relative to 79, does not depend on the variable chogen to describe the sample
space &, That is, the information content of o message is independent of
the *language™ in which the messape is given,

We will now use the basic concept of the information f(P: %) o develop
thi concepts of the relevance B (X, ¥) of the rov. ¥ to the vy, X, and the miss-
ing information {or ancectaindy) D0P) in o probability assipnment £

The relevance R{X, ¥) of ¥ to X means the information in the joint
distribution of X and ¥, when the prior distribution is the product of the
distribution for X and the distribution for ¥. Thus, for discrete r.v..

f By (2, 1) 1

R{X, ¥) =X Pyyi(x,, n)In .
% o o i P*f.‘l'r} .F-l-!_l'j-l i)

(2.3.22)

o conniliingms 1oy,
REX, ¥)= J jgn (x, ¥iln [M:[ duely. (2323
ax(x)ey(n)

We will give a few mathematical properties of R (X, ¥). Fram (15) and the
definition of statistical independence (see Section 2.1),

RAX, ¥) 2 0 with equality if and onlyif ¥ and ¥ are sto-
tistically independent. (2.3,24)
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Since (22) and (23) are symmetric in X and ¥,

RIX, ¥)=R(Y, X). (2.3.25)
From (22), noting that pyy (x;, x)) = pelx) 4y, we have:

The relevance of any discrete r.yv. Y to itself is
RIX XY= =Y pelx) npalxd. (2.3.26)

By cither generalizing (26) to the case of a continuous r.v. X, or hy setting
pyy (3 &) = po(a) d(x — x")in (23}, we have:

The relevance of any continuous .y, X to itsell is

RIX, X) = o, (2.3.27

The relevince B (Y, ¥) medsures the informution contained i the joint
distribution for v und ¥, if one already knows the individual distributions
For X and ¥ alone. Now, the individual digtribytions contain the same in-
formation us the joint distribution concerning X and ¥ separately; however,
the individual distributions do not tell us how to readjust our predictions
about X, il new imformation is given about ¥. Thus, R measures the correla-
vonal informition in the joint distribution, Le, the amount of infarmation
{contuined in the joint distribution) about X which would he pained by know-
ledge of Y. Property (24) states that we can never Jose information about X
by gaining knowledge about ¥, and that we in fact gain information about X
{hy learning abiout 1) whenever X and ¥ are correlated. Equation (25) states
that knowledpe of ¥ provides the same amount of information coneerning X
as knowledge of X dovs concerning ¥, Expression (26) for the relevance of X
to itsell” is identical with Shannon's measure of 1he missing information,
equation (2). The relevance R (X, X) of X to itsell means the infarmution
pained aboul X upon learning the value of X, when the prior distribution
in s Tl 0t is reasonable tooenll R (X, X) ihe missing information in
‘raﬂ;_:_r,j. P lowever, vue picasute ol the prissing information, to be given below,
will be somewhat different from R (X, X} (our measure will be & generaliza-
tion of (26)). Property (27) shows that when we generalize Shannon’s in-
formation measure (26) to continuous distributions, the result diverges,

We now come to the impartant concept of the uncertainty, or missing
mformation, in o probubility assignment. Suppese that the probability as-
signment P = (pi, 03, .., o) corresponds to the maximum knowledpe
which can be obtained about the autcome §. The information in P, relutive
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to the prior probabilities 2, is then [ (P, PY); thus, FOP™: PYY i6 the mixi
mum anformation ablainable, relative 1o tie prior probabilitics £9, Now, if
one’s actual stute of knowledge is described by the probahility assignment 2,
then the missing information needed to attain the stute P* is

U(P; P™; POY = [P P — (P} PY), {2.3.28)

Equation (28) will be our official definition of the missing information, or
uncertainty, in the probability assignment P, The Uncertiinty depends, as
does the information, on the priar probahilities PO it also depends on the
probabilities 2™ which are taken s deseribing the state of maximum know-
ledge. We will often denote the uncertainty by U2, amitting explicit men-
tion of P" and PO,
We will give a few formal propertics of GiP). Equations (200 amd (24)

imply:

I Pand PP are continuous while P* is discrete, then E{P)

is infinite, (2:3.29)

Equations (11) und (28) lmply:

Let the sample space be the finile set Ty ety vasa s, Bnd
assume that P and P*" are given by

PAZD =Up (i=1,....4,
PUOCYY = (F=1,....m k Fixed);
then
UPY = Upiaeena i) = =S Inp,. (2.3.30)
Similarly, (14) and (28) imply :

Let the sample spuce be the region (a < x < ) of the real
axis. Assume that P is continusus, and let PO and P™ be
given by a%x) ='const. = (b — a)",
Y ey Segsx/ +L)
a"(x) =
0 (x <uxy or &> x4+ L), (23.31)
Then
UlP)y = Uloix)] = = [o(x) In [Lo (x)] dx.

Property (31) has an obvious generalization 1o the case that the sample
space is an N-dimensional continuum.
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Property (29) states that the uncertainty in a continuous distribution 0(x),
when the stute of maximum knowledge is regarided us being given by o single
point g (or a countable set of paints), is infinity, Thus, the uneertninty (28)
is not & very useful concept if' P is continupus while P* is discrete. Properties
(30} and (31) give the expressions far U(P) in two cases which oceur fre-
quently i upplications, Comparimg (30) with (2), we see thit LA P) reduces
to Shunnon’s information mensure in the special case referred to in {30,
Comparing (31) with (3), we see that ey issumilar to (but notidentical with)
Shannon's mensure in the special case referred to in (31).

A Tew examples will help illustrate the nature of the uncertainly measures
(30) and {31). In each example, we assume that the reference states 2° and P
sutisty the conditions of (30) and (31).

I.Uf[ﬁrl.p]

o @f=emmmmmes

a bo I #p

Figure 2.3-3  The uncerainly in o twosided experiment, with probabilities poand | —p

The uncentainty in the owtcome of flipping a well-balanced coin is
') fl."_l 1/2) = In 2, Maore generally, the uneertainly in any experiment have
ing two outcomes, with P({Z, 1) = p and P([Z3)) =1 —p,is

Ulpl = py= —plap— (1 = p)yIn(l — p).

This function is sketched in Figure 3, As expected, the uncertain vy is muoxi-
mum when p = 1/2, and decreases to zero as p approches 0 or .
The uncertainty in any experiment having n equally likely outcomes is
U Wi ooy My = Inn. As expected, the uncertainty increases with .
The uncertainty in a Guussian distribution, f.e. a continuous disteibution
witle density

e 7 L]
ply) = 1,._ exp [M]. (2.3.32)
o N 2 20*
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may be found as follows: We canshow from (32) thar the parametersm and o
are the mean and varianoe of o(x). Fram (31) (upan extending the limitg 1o
(—ct, e)),

1) [ — B i x i L. [_{-Ilr = ﬂi}: }; dx
U [a(x)) .L ¥} In - V- maul i | G

G~ =
— ¢ In e i | ey
,,\_f'gn 22
L | L |
—n — | A —— [ — )}y = -—In( _) + —
(-:r V. 2::) 2t i) T el

:n(Jiﬂ;E)‘ (2,3.33)

As expected, U inereases with o, decrenses as L increases, and is independent
of wi,

24 JAYNES' PRINCIPLE

In this Section, we give an important principle of inductive reasoning first
stated by E.T. Jaynes in 1957 in connection with statistical mechanics!?, and
used by Jaynes'® and others'™ ' in more general contexts.

suppose that you must make a prediction about the auteome of same
experiment, but that the given data s incomplete (e, does nut determine a
precise outcome). What should you do? One answer is that you should do
nothing until someone hands you more data. But suppose that you must make
a prediction withowr having complete data. In the real world, nearly all
predictions are of this type. For example, you may want to mike predictions
about a box of gas on the basis of measured values of only o few parameters
stch as the energy, volume, and number of males, 1t would iot be very uselul
in this situation to wait until all the dit (i.e, the precise positions and velo-
cities of all the particlest) is known before making predictions. Thus, & mare
practical answer 1o our question is that you should indwee (i.e. describe prob-
ﬂhi."il]l..':!'“y} thie outeorme fram the data. Thus aour ]'Jl'l'llﬁ[l.‘l'll istofind o prol-
ability assignment P corresponding to the given dat

For example, suppose (hil we want to predict the nunmber of spots show-
g on the next teial in the dic-throwing experiment, given only that the die
has six sides with i spots on the ith side, and that the average number of spots
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obtained in o previous long series of throws was 4.5 (this {s an unusual digy'".
The duta is incomplete, so we must use probabilistic reasoning, That is, we
seek o probability assignment PO = poli= 1,2, ..., 6) representing the
mosl regsonable statement which can be made about the outcame of e
next trial, Since the p, are probabilities,

Y=l (2.4.1)
Since the nverage throw is 4.5, the p, should satisfy
(i = Xip = 459 (24.2)

Many different probability assignments agree with (1) and (2). One such
ussignment is pg = 12, ps= 112, p; = p, = py = p, = 0. But this: ns-
signment seems to assume arbitrarily that /L fy, £3, fi cannot oscur, whereas
the data does notimply this, That is, this assignment contains more informu-
ton thin is actually given by the data. What we would like to find is that
probability assignment which contains only the information contained in
the data. This is in accord with the standard scientific procedure of assuning
no mare than is given experimentally, But we already have a quantitative
expression LUPLPY) for the information in a probability assignment 2, Sup-
pose thal we annimize T(P; PP, for lixed P9, with respect o those proh-
ability assignments P autisfying the given dute, i.e. satisfying (1) and (2). The
minimizing probubility assignment P™ then contuins all the information
contained in the data, since P implies (1) and (2). Furthermore, any other
set PUosatislying (1) and (2) but sor minimizing 7 (P; P*) also containg the
information in the data but contains, in addition, an amount of information
(P P%) — I(P™; P°). That is, P* contains more information than is
given by the dati. Thus the unique probability assignment, which contains
the given data and does not arbitrarily assume anything more than the given
data, is that ussignment which minimizes I (P; P%), for fixed 2°. with respect
o all P satisfying the data. Allernatively, by (2.3.28), P maxinizes the un-
certainty UEPY with respect 1o all P satisfying the data,

The vriterion far choasing £ is not quite complete, since we have not yet
determined the prior probabilities P, The prior probabilities represent the
state of zero informution, Le. the state corresponding to knowledge afonly
the set & of possible outcomes. Tn the case of the die experiment, PY corre-

* Y CLLAT a2 AR, the average valine in o Tong series of (hrows T lighly Hkely Lo
et this expestation value on one throw, Thog the expectation virlue om one thyow shauld
be {{) = 4.5,
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sponds to the datu thut the possible outcomes ure £, i, .., fo. Tt is fairly
clear that the corresponding probabilities should be pi’ = 116 ¢ = 1, ..., 6),
since any other assignment would amount to an unwarranted preference for
one or another of the f.* We can justify this choice of prior probahilities
more formally from (2.3.26), which states that the information gained by
learning the outcome, when the initial probabilities are p’, s =250 np!.
Thus, —Xp{ In p represents the missing information or uncertainty in £°,
and hence (by the previous reasoning) the prior probabilities should maxim-
1,3;: ~Xp n p? subject to the prior data, i.e. subject anly to (1), The result i
pio= 1/6.
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Figure 2.4-1 The probabilities maximizing (3) subject to (1) and (2)

For the die experiment, the probabilitiecs PO and P™ satisfy precisely the
conditions stated in (2,3.30), s0 we determing £ by maximizing the un-

certaint ]
* U(Py==XpInp, (2:4.3)

subject to the given duota. Extremizing (3) subject to (1) and (2), we obtain
(using standard Lagrange multiplicr techuigques)

po=Aexp(—ai) (i =1,..,6), (2.4.4)

where A and the Lagrange multiplier & are chosen so as o satisfy (1) and (2).
When this is done, i is Tound that a = = 037; the result is shawn in Fig-
ure 1.

* Tlus idea 15 uswatly called the “principle of insulMicient reason”, sinee o' = 1uis chosen
due o mafficient renson for preferring one outcome over another, T seems 1o Tiave been
first stntid by Laplace.
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The above discussion applies to any experiment in which the sample
space s finite, with the following qualification : (3) is the correct expression
for the uncertainty only il the prior data is sueh that no outeame is preferable
over uny other, Le. anly if the prior data is svmimetric with réspect 1o the
outeomes, since otherwise the prior distribution pr = [[nis not appropriate.
With this gualification, the probability assignment P corresponding 1o the
given duta s determined by maximizing (3) subjeet to the dato IF 5705 in-
finite but countable, we may consider the uncertninty U{F) 10 be the limir,
ae p = o, of the uncertainty in the distribution (py, ..., pu). We thus darrive
wt the following principle of inductive reasoning:

Jaynes” Principle for countable sumple spaces. Let %7 = {8, 5y, ... be
the st of possible outeomes in some experiment, and assume that the prior
duseription of the experiment is symmetric with reapect to the . 1 dita D
15 then given concerning the experiment, the probability assignment
P o= (p;, e, which represents D must maximize the uneertainty (3)
with respect Lo all P satisfying D,

Letting PLD) be the maximizing set of probabilities, the corresponding
uncertainty U [PLOY] is the uncertainty in the data D, and T[P(DY; PY] is
the information in the datn D0 Thus, Joynes' principle exiends the informui-
tinn coneept From the iden of the information content in o probability distei-
bution to the more direct idea of the information content in & body of data.

Unfortunately, new complications arise when the set & of possible our-
comes 15 nol countablé, The previous argiment indicates that what we wint
is to either

() minkmize L0F; PY (equation {2,3.14)) subject to the given data, or
(b) maximize U(F; PR PY (equation (2.3.28)) subject 1o the data.

Under either alternative, it is necessary to And some criterion for chodsing
the prior probuhilities PP, Laplace’s principle of insufficient reason would
seem 1o indicate that, if & = {a < x < b}, then P? is given by the density
p%x) = const, = (b —a)" L. But if we use a new variable ¥ = glx), then the
transformed disteibution G400 will in general not be constant, and hence p”(x)
violates Laplace’s principle when the prior data is described in terms ol 1.
Thus, Laplice’s principle cannot determine the prior distribution unless we
have some criterion for deciding which variable to apply it 1o, Any variable x
to which Laplace's principle applies (f.e. any variable x such that p"(x)
= const.) will bo called a natural variable for the experiment.
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We will not, at this point, give farther criterin for the determination of
a"(x). Such eriteria have been given by Jaynes, ' and will be presented in
Chapter 3 for the case of classical mechanicn) Syslems,

By (2.3.14), if x is.a natural variable, then

I
e, pe) ==J alnoddy 4 o (bh— o),

i

Thus, if the range of x is Infinite, and if Jong dy is finite, then I(P; P7)
is infinite. Since in classical statisticul mechanics the variable v ahwnys hog
an infinite range, 7(P; P") is always infinite in statistical mechinics, Thus,
alternative (n) is not useful,

So we turn 1o alternative (b), By (2.3.31), if x is & natural varighle and f
the state of maximum knowledpe iy given by a densily of the form,

- L=y {.H'l 2xEx 4 L)
wM(x) = (2.4.5)
| 1) v<x; or x>x 4 £)

then the uncertainty is

UIP) = —[plx) In [Lo(x)]) dy = — [otx) nplxydx — n L. (2:4.6)

This expression exists whenever [ o In g dy exists, and hence does riog neces-
sarily diverge when the range of x becomes infinite. However, (6) does diverge
a5 L =+ 0. This means that alternative (b)Y is ot uselul if we et the sinte of
maximum knowledge be a single point x,. The eisy way out of this dilemma
15 1o ussume that L is some small but positive number. Fortunately, in the
case of classical statistical mechanics, there are physical reasons {based on
the ides that classical mechunies is un approximation to the more “exnel™
theory of quantum mechanics) for assuming the existence of just suuh u small
number L. In the case of quantum statistical mechinics this question does
not arise, since the possible outcomes then form a discrete sef,

We thus have the gencralizution of Jaynes' principle for non-countable
sample spaces;

Jaynes’ Principle for non-countable sample spaces, Assume that x is a
natural variable for the experiment under consideration (i.e. assume that
l:_hc prior distribution, in terms of x, is oMx) = const.), and let the state
of maximum knowledge have the Torm (5), If data D is HIvEn concerning
the experiment, the probability assignment el which represents ) must
maximize (6) subject 1o .
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We have already given an example of Jaynes' principle for countable
sample spaces (the die experiment, with the dota <6 = 4.5), As exnmples of
Jaynes” prineiple for non-countable sample spaces, we will pive three wseful
resulls. In edch case, we will dssume that v is o naturol variable, and thae ¥
runges over the realaxis, The results are estublished with the help of standard
procedures for maximizing integrals subject to given construints,

If the data is of the form v e &, where & is any Lebesgue measurable (ie,
“reasonahle™) set of finite Lebesgne measure (i.e. finite length) [, then
Jaynes" principle implies

alx) = " eh) 247
0 (xéd).
The corresponding upcertginty is

U [olxl] = In (&1L, {2.4.8)
IV e dita cansists of expectation values of Tunctions g () (f = 1, ..., &),
ey =G {i=1,....k) (2.4.9)

where the G are given, then Jaynes” principle implies
plx) = £~ exp [— X g1, (24100

‘where the constant Z is determined from [ p(x) v = 1, and the a, are deter-

mined rom the data (9). The uncertainty in the data (9) is
U lo(x)] = E o6, — In(L)Z). (2.4.11)

IFthe given dati consists of the mean m and variance o, then Taynes'
principle implies that p(x) is the Gaussian distribotion (2.3.32); the corre-
sponding uncertainty s (2.3.33),
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CHAPTER 3

Classical Statistical Mechanics

3.1 THE PROBABILITY DENSITY

ActorpiNg To Chapter 1, classical statisticnl mechanics is the theory of
mechunical systems for which quantum effects are negligible, and the informa-
tion is less than complete. A complete description at any instant is given by
the phase paint & = (fy, coes Gy Proe-. prrand is called a state. An incom-
plite desceiption is called a statistical description or mixed state,

IT we know the precise initial state and Flamiltonian, then we can make
deduetive predictions about the system at any time, But if either the precise
stite or the Hamiltonian is not known, then we can make only inductive
predictions, i.e. we are forced to guess. According to Section 2.2; probability
theory is the appropriate formalism for inductive inferences. Thus, prob-
ability theory is the mathematical Innguage for statistical mechanics.

Lo order wo apply pl'nh:ul-'ﬂli!}r theary to incomnpletely specilicd mechanical
syslems, we must find an appropriate sample space 5, feld of events F, and
probahility assignment P (see Section 2.1} The obyvious choiee of & is phase
spuice. Thus an outeome, denoted in Section 2.1 by £, means a phase point
xeS The simplést and most vseful choice of ¥ is the collection of all
Lebesgue measurible (ie. “ressonable”) sets of phase points, so that euent
means any Lebespue measurable set of phase points.®

A prabability assignment P means the assignment of a probability P(&7)
to every € F, such that postulates (2.1.1}, (2.1.2), (2.1.3) are satisfied.
Since mechanics is a dynamical theory, P will genernlly be different at
different times, We will denote the entire probability assignment at the
instunt ¢ by £ 5 0); the probability of & at time £ will then be denoted by
PF;1).

In classical statistical mechanics, P ( ;1) is usvally a continuous prob-
ability assignment, possessing a Lebesgue integrable probability density (also

* As explained in Scctjon 2.1 (see the footnote an page 18), it is necessary 1o restrict F o
anly the Lebesgue mensuralle sels. Renders unfimiliar with the notions of “Lebesgie
measurghlie” and “Lebesgue measure™ may replace these terms by “ressonable™ and
“phinse volume™ without undue loss of precision.

$ Hobom (0)24) o
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called o probability distribution) 6 Cx, ) such that Tor any & & T
Pig:)= J‘ (e, 1) edy (1.1
Laf

We may think of the phase poiit as 4 3dimensional candom variable,
sincex is imdeed aset of 2/ numbers whose values are determined by the out-
come x (see Section 2.1). Thus, ¥ plavs & dual rale: on the one hand, any
particular x is an outcome, and on the other hand v is a random variable.

Any numernical fuimetionof the suteome vis an ey, For mstance, the Hamil-
tonian H{x), the total mamentum, and the firsd coordinate ¢, are one-
dimensional r.v, The coordinates (g, <., q,) form an fsdimensional rov

Some authors define o new concept called the ensenible; this concept 1s
toughly equivalent to the idea of the probability distribution g (v ). The
ensemble is the cause of much needless confusion in statistical mecharics,
and is best a superfluous idea, so we will not use it

In some cases, P05 0) may be diserete, with probabilities g,y oo i
signed to o discrete set of points &, 2. ... Inthis case, there is no Lebesgue
measurable functon o (x, 1) satisfyving (1), However, we may still prescribe
PUosr) by (1) provided we understand o (v, £) to be the generalized Tunetion

ple, 1) = Xp dlx = xdr)). (3.1.2)

Exact mechanics corresponds Lo infermation of the form “the phase point
at time ¢ s 200, with probability 17, so that mechanics is a special cose of
statistical mechanics, with probability density p (x, 1) = & {x — x, (1)),

According to Sections 2.2 and 2.4, we determine the probability distribu-
tion from the given information. In statistical mechanics, this is uccomplished
by using Juynes' principle (Section 2.4) and the dynaiics of the mechanical
system. The dynamical conditions will be discussed in Section 3.3; Jaynes’
pringiple will be applied in Section 3.6,

3.2 A SIMPLE EXAMPLE

Simple examples are always helplful in physics, but especially so in statisticul
meehnics since the ideds of phase space wnd probubility densities in plase
spuce are fairly abstract.

* Surietly speaking, ull integrals in ks ok are Lebesgue ilegrails, Husswivier, the reader
may think of the integrals as Riemunm integrals without updue loss of precision, since for
Riemnnn integrable functions, the Lobesgue Infegral equals the Rigmann innégral
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The simplest system which illustrates most of the ideas in this chapter isa
biead of mass i moving freely along a lengih £ of wire, bouncing elastically
from each end. We will call this example the “particle in a box",

The mechanical state of the particle in a box is givén by v = (4, p), where
g s the position and pis the momentum, Phase space . Is thestrip 0 < g < L,
=t < po< . The Hamilonian is #(x) = p*[2m (x e ¥,

A simple prabubility density at some instant ¢ = (s

bl O=g=L{2 and D<p<h)
oly, p, 0) = (3.2.1)
0 (otherwise).

This density i HHustrated in Figure 1 (one of the advantages of the particle
it box bs that we ean draw phase spage on a sheet of paper). The density (1)
is nom-negative and normalized, as it should be.

ov

|

Flgure 3.2-1 The probability density (1), Inside the shaded region, i = AL, Outside,
g=4

It is esseatial to understand that o does not represent the mechanical state
of the system; p represents only the observer's knowledige (or data) about the
state of the system. The distribution (1) does not siy that the phose point of
the system is somehow smeared oul over the rectangle of Figute 1. The
actunl mechanical state of the system iz given by some precise point inside this
rectangle. The only thing that is smeared out is the observer’s knenvledoe: the
vbserver docs not know just where the phase point is, so he represents what
he does know by o,

According to (24.7), the density (1) corresponds to the ditn that “the
particle is in the left half of the box at ¢ = 0, with momentum between 0
and A, We will elaborate on this point in Section 1.6.
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Putting (1) into (3.1.1), we see that

Pilgy < g < qui) = 20q — )L {g: < L[2), (3.2.2)
Pilp, <p<p}iO)=(ps— it (0 <p, <py<h), (3.23)

Pllai<g<qlolp <p<pdi0)=2(q: —q)p: — p)ibL
(g2 <Lj2 and O <p, <ps<h), (3.24)
P([H(x) < E};0) = \2mElb (£ < b2m), (1.2.5)

PUE < Hix) < E + AE}; 0) = m/262F A E
(AE small, and £+ AE < b 2m). (3.2.6)
By (2), (3), and (9, iT g, = L2 and O < p, < p, < b then

Pl <g<qpn{p <p<pafi0)
=Pllg<q<aiOP(p <p<pli0). 327

We can easily show that (7) holds for any g, , g2, py . p2. Thusthe rv. g and p
are statistically independent (compare (2.1.36)), We could have seen this
mntuitively from Figure 1, by the following reasoning: infarmation aboul g
does not alfeet predictions abaut p (For instance, iCwe are given ¢ = L4, we
dan sHIl anly siy that O < p < B but according Lo the inductive inference
interpretation of probability, statistical independence of ¢ and p means that
new information about ¢ does not aflect predictions about p; thus, g and p
are statistically independent,

According to (6) and (2.1.19), the probability density for the rov. H(y) (i.e.
for the energy E) is _

3 7
G (E, = 0 = v’iﬂflﬁ E (E= B (3:2.6)
0 (E> Equ)s

where £, = 8 [2m. Thus, within therange (0 £ £ < E), smallerenergivs
ure more probable than larger energics. For instance, using (5),

PUE < Epinf2):0) = 1/4/2 2 0.7 (3.2.9)

33 DYNAMICS OF THE PROBABILITY ASSIGNMENT

Information about o mechanical system at time & is obviously relevant to
predictions at any other time #,. Thus, the dynamics of the mechonical sys-
tem relates the probability assignment P { ; 7y} in some manner to P{ :1,),
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i.e, the dynanics translates the datu from &, to ¢, . The object of this Section
is to nvestipate this time-translation of the datn. We will assume that the
Humiltonian is time-independent and precisely known.

We first derive the basic condition which the dynamics imposes on the
time-dependence of P ¢). Corresponding to any initial phase point 1, al
time £y, let X (7] xg, 1) represent the phase point at time ¢; thus, x, evolves
itte & = X {r]xg, fy) during tg 1o . The set of points & = X (¢|xp, f), for

Figore 3.3-1 Phase space dingram of twao sets oy and 'y soch that &, evolvey inlo
during ry 1o fy. A portion of one phase path is shovn, with phese point xg ot f, wnd
S TR

fixed (xq, to), and for — a0 < 1 < oo, iscalled o phase path; thus the moving
phise point traces out & phase path, The mechanical motion defines o one-
to-ane transformation of phase space: for fixed £, and 1, there is exnctly one
phase paint x = X(t]x;, o) corresponding to each v, &%, and conversely
for each x e & (and for fixed 1y and 1) there is exactly one x, such that
X=X (g, 1)

Let &Y be any Lebesgue measurable set of phase points, and defing &, as
the set of all points X (¢, |2, fo) such that x, & &, for fixed ¢, and r, . That
is, &5 evolves into & during f, to r, (see Figure 1). From the definition of &,
and &, i &4 occurred at ¢ then &, must occur at £, . In symbals,

P&ty | &oste) =1,
From which (using (2.1.9))
P{&“:h ﬁ(?g;vfn]".F[Ju;ﬂﬂ. {343.1]
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The definition of &, und &, , along with the fact that X (t]xq, ty) defines a
ane-to-one transformation of &, implies that thddy oecirs al y, then &, must
have accurred at 1,. Thus

Pldaital&€50) =1,

fram which (again using (2.1,9))

P8 ity dyin) = P51, (3.3.2)

Finally, (1) and (2) imply (s, ; L) = P(&g;15). Thus the basic condition
which the dynumics impases is:

If the Lebesgue measurahle set of phase points £, evalves
oy during ¢, 16 fi. then PAE ) = P ode:te). (113

We next find the condition which (3) imposes an the evolution of 5y, o)
Denote the 1Lebesgue measure of any measuriable set & by 4] that is,

1] sJ. . (3.3.4)
L

A theorem of elassical mechanics' states that, if g evolves into &, during ¢
to rp, and iF the variables v = (10 eny Pe) are canonical (ie such that
Hamilton's equations hald), then

|'!|J] = If""‘lll' 11.3.5)
Crutline of the proof of (3.3.5): Define

[ Ej digy s oodge, dpy, iy dpy,
ka
Under an arbitrary change of variables (14 - 00) = (g1, veey Pr), we hive

& = J. TGty e prd gty oo iy
]
where

1 - a ]
J(tf PP = ."_‘1?.’_._’.’.:_}
OTghs <oy pid

15 the Jacabian of the transformution, and where 4" is the region into which &
transtorms under the transformation. It can be shown! 1hat if (s e p)
=+ Gy -y Pr) s 8 canonical transformation, then J (140000 py) = 1. Hence,

Classical Statistical Mechanlcs 549

for canonical trunsformations,
|&] = Ay e ilpy = |18,
duwa
It cun be shown' that, if the variables ¥ = (g;,....p ¢} are canonical, then
the transformation x = 3" = X1, | ¥, fod 18 cananical, for uny fixed ¢ and 1, .
That is, the nutural motion of any Hamiltonian system amounts 1o 4 con-
Hnuous sequence of canonical transformations. Thus, for any f5 and iy

|l EJ. il ‘—‘J‘ dy' = |4,
xi iy edy

where & is the reégion into which &, transforms under the transformation
=% = N k).

Naw assume that &, is a small region containing the peint xg. Then, by
(310,

PG 1) = J g vy to) el = g (x, 1o} |60l {3.3.6)

iy

where the approximation is good if ¢ is sufficiently small (more precisely,
if the maximum value of |x — x4l is sufficiently small, for all x e da). 108,
evolyes into & during £y to #,, then the point v, = Xty | xg, ) must be
in . Thus

P )= f gl el = oy ot M| (3.3.7
Ny

Condition (3} and equations (5), (6) und () imply o (x,, r,) = e, fa). We
can nake the approximations as acenrate as desired simply by choasing [
sufficiently small, Thus

2] m‘l- "J.] = 9[—1'-_:}1 "t;l.]- where X = Xﬁl | iz 'Ill:l'].r talﬂ}

Tliis is the busic dynamical condition on o; it soys that if xg evolves into x,
during 1, to ¢,, and if the variables x = (g,. ..., p/) are cunonical, then o s
the same vitlue ot (x,, f,) a5 it has ot (xy, 14).

An integral of the motion means a phase function g (x. 1) such that, for ull
N fyy amed-ry

Elvy, 4) = g(xg, f) where x, = XA | % ts). (3.3.0

That is, for any fised initial ppint x, at time 14, the value o (X xq,00), 1]
of the funetion g does not change as X(r] vy, £5) moves alang the phase path,



60 Canoepls in Slallslcal Mechanios

A constunt of the motion means & time-independent integral of the motion,
i-e, a function g(x) such that, for all x;,, #, and [

Hi-xll = E[-J'-'n‘r} Whlﬂﬂ: Ay = 'E.{lrl ' X s Iu]. {331“”'

For example, the Hamiltonian H(x) is 3 constant of the mation. If go extermal
forces act on the system, then the total mormentum veator and the angular
momentum vector are constants of the motion, and R — P1/M (R = center
of muss, P = total mamentum, M = total mass) isan mtegrnl of the mation.
An interesting question in the general theory of mechanical systems (and o
question which is important for stutistical mechanics) is: how many con-
stants of the motion exist which are both Lebesgue integrable and functionally
independent, and what is the nature of these constants of the motion? This
question is easily answered for 2-particle systems. But for the more inter-
esting case of Vinteracting particles, the answer is largely unknown. A recent
result by Sinai* suggests that, for interacting systems confined by external
forees, the Hamiltonian is the only constant of the motion which is Lebesgue
integrable and functionally independent of all other constants of | lie motion,
Sinai has proven this result for a system of W hard spheres bounecing elastically
from the walls of a box, for any N = 2, [tis not known whether this result
also holds for more general interactions.

It is known from mechanics' that i g Ce, 1) is an integral of the motion,
and if'all the appropriate derivatives exist, then

D
Lic SR S PO (3.3.11)
ot

where the square brackets mean the Polsson bracket:

! i &
ux o] = (!"'E o _ f‘.ﬂ), (3.3.12)

=0 \dq, By gy By
Equation (8) says thot g (x, ) is an integral of the motion, Thus, by (11},

il

—= oA fo, H] = 0. (3.3.13)
dr

Equation (13) is culled Liouville’s equation: it is the hasic differential -
tion for g (x, £).

Most dynamical problems in statistical mechanics are equivalent to finding
(perhaps anly approsimately or petiallyd o Co, 00 i teoms of o (v, 0). One
way of doing this is to use (4) directly: replacing (v, ,2,) by (v, 0), and
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replacing (xy, 15) by (x, 1), we get

0(x,0) =p(x, 1) where x,= X(0]x,1). (3.3.14)

But, for systems having tim:uin:icpcndcnt_ Hamiltonians, X (¢, | xy. 14) de-
pends on 1y und 1, only through the difference 1, — ry. Thus X{0|x, 1)
= X{=rla ), and (14} becomes

p(x, 1) = g |X(—1t]x,0),0). (3.3.15)

Thus, it X {—1]x, 0} is known for all x und 1 (i.e. if the solution to Flamil-
tan's equations is known!), then g (v, 1) may be found in 1erms of o (v, 0)
from (15).

Another way to find p (x, £) in terms of g (x, 0) is by solving Liouville's
equation (13), The general method of solving linear first-order partinl differ-
entil equations such as (13) is discussed in any book on partial differentiol
equations (see, e.g., Rel” 3}, In addition, various expansion techniques, per-
Lrhation techniques, disgram technigues, ete,, have been developed for the
specific purpose of salving, or partially or approximately solving, Liouville's
equation (see, e.g,, Refs. 4-7), Since this is a book about o neepts rather than
techniques, we will not diseuss these methods.

We will mention one further result concerning the solution of Liouville's
ciition :

Let i (e, 1), coaipulx, 1) be a st of differentiable inte-
gruls of the motion, and let [y, ..., 1) be any dilfer-
cntinble function ol k variables. Then /[, (x, 1), . ... ¢ (v, 1]
sutisfies Liouville's equation. (3.3.16)

The proof will be left to the reader. Peoperty (16) simply says that any fune-
o of integrals of the nmotion is isell an integral of the motion, Accarding
1o (16), i we can express o (v, 0) in terms of known integrals of the mation:

i (x, ﬂ:l - f[‘ﬁl (x:0), ... s ‘ﬁh (—Tr {}”r
then we can immedistely write o (x, 1) us
(e 8) = [Ty (x, 1), ...y i (x, 1)), (3317

Equation (17) says that the probahility distribution of the integrals of the
motion is preservéd in time. Thus, it is easy to translate in time any given
informution khout the integrals of the motion.

The purticle in o box illustrates most of these ideas. Let oy, ) he given
by (3.2.1). For this example, it is easier 1o use (B) than to solve Liooville's
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Figure 3.3-2  The probability disiribution far ihe particle in o bos, ar thees dillerent
times. Tnside the shuded region, o = 2bL. Ouotside, g = 0. The distanii d = b

equittion; Using (8), we see that after a'short time ¢ the distribubion o (1)
is as shown in Figure 2a, with o = htfm. After u longer time, the deasity
hegins ta “reflect” from the wall ¢ = L, us shown in Figure 2b (drawn for
the instant at which o = bifme = L), At much longer times (such that fitjm
w L), 1hi distribution hus the shape shown o Figore 2o,

As tlime progresses, the original rectungle of Figure 3.2-1 distorts into a
finer und finer filament which stretches back and forth across phase space.
This phenomenon, first noticed by Gilibs and known as “Gibbs phase mix-
ing”, will be discussed in detail in Chapter 5. Despite the fuct that the shape
of the distribution in Figure 2¢ is quite different from the priginal rectangular
shape, by (5) the areil of the shaded region in Figure 2c equals the area bLj2
of the original rectangle, Despite the perivdicity of the mechanicul system
(the particle is just bouncing back and forth between Oand L), the probahility
assignment never repeats. We see that statistical descriptions of mechanical
siwtems ntay have features which ave qualitatively diffevent from mechanical
deseriptiony,

Let = mhLj4h, sothal d = L[4 (see Figure 2a); ot this time,

Pilg = Lj2);1) = 075
Pilp>04;0=1.

(31.3.18)

Thus the particle is cectnly moving toward the right, bul there s only 4 T
probahility that it is still in the Teft-haad half of 1he box, Let § = mbih, so
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that d = I, (see Figure 2b), At this tine,
Pilg < L2};1) = 0.23

(3.3.19)
Pilp > 0};0) = OT5.
I seemn Tuirly clear from Figure 20 that, for ¢ = mlLlb,
Plg< Li2);1)= 0.5
' (3.3.20)

Pip =0 =05,

wlere the ppproximation gets better as ¢ gets larger,

Property (3) implies that the probability distribution for the energy 1
time-iidependent (simply choose &, 1o be the region between two “energy
surfces™ Hiv) = Eand Hix) = £ - 1),

The dynamics of #1 ;) described in this Section serve only to translate
data from one time 1, 1o another time 1. If, on the other hand, we oblan
new data ar some instant | between #y and ¢, and il wie wish to base our
predictions For ¢ an all the available data, then the assignment 24 2 1) aris-
g fror 20 da) and (3Y 0 nol spproprinte. We should instead base aur
predictions on #( ¢, ) arising from P (5 1), where P( 5 1) is the probability
assignment at ¢ which reflects not only the ofif dota (ie. the dota deseribed
at i by £ ;00 but also the new data oblained at T IT the given data il @ is
really new, Le not predictable from PO ;B then B+ 1) will be dillereit
from P 1; that s, the probability assignment undergoes a sudden jump
or eollpse when we obtain new duta, Thusp (v, ) obeys Liouville's equation
at all times except those instants when new data is obtained ; at such instanis,
o undergoes o sudden collupse.

34 EXPECTATION VALUES, REDUCED DISTRIBUTIONS,
CORRELATIONS

Any phase Tunctipn glx) 18 a random variable, since the numerical value of

glx) s determined by the outcame & The expectation value (sée (2.1.40)) of
2{x) over the probability assignment P ; ) will be denated {g(x),:

Culody, = [ glx)o (v, 1) dx,* (3.4.1)

Asdiscussed in Section 3.1, cach component of xis on rov,, and 1 itsell is an

rov. Thus g (v, this the joint distribution of the 27 e, ¢, oo. ppy ind reduced
alisteibotions iy be defined as b Section 20 (see (20031000,

* Allintegrals are over the entife range of the variobles, unless explicitly stated otherwise,
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Assuming that the system consists of N point particles,* the phase point
15X = (Qraniey Qus Prossss px), where q; and p, are now véctors representing
the position and momentum of the ith particle.** The reduced distribution
Tor (g, p) wt time 7 is

Eturqh Fr- "}

= Il?{xl Ny, ..., TP P day ip,, coey b= "'ri.’n Uiesen Py,
(3.4.2)

We may generulize equition (2) in an obwious Wiy do oblain un expression
for the reduced distribution of)' | (q,, 4, -0, 0. Pis Pyecoey pi) Tor the r
particles numbered 7, f, ..., k. Using only o'", we can answer all questions
about the ith particle alone. For instance, from o we ean caleulve the
probability that q, is in some 3dimensional region K On the ather hand, we
must use oi;' to answer such “2-body questions™ us the probability {hat
1y = a] = o, or the probability that q, & 8, given ge K,

ONten, o0y, -, Gy, Piyeen, Py, 1) 05 symmetric under any particle ex-
change (4, p) += (q;, p). By Liouville's equation, p(x, f) is symmelric
whenever both g (v, 0) and H(x) are symmetric. But we usually determine
2(x,0) from the initial daa (see Section 3,6); thus gy £ s symmetric
whenever the Humiltoniion sod (e fnitjul data are symimebric under pariicle
exchanpe,

Ifp (x, t) is symmetric, then by (2) the function )"’ (q, p, 1) is independent
of i. In this case, pi" will be written o1 and called the “1-body prohahility
distribution". Similarly, »!}' , may be written o and called the “r-bady
probability. distribution”™. Whenever we use the notation o', it s 1o be
understood that p is symmetric,

With p'*', we can answer any question about any single particle, For ex-
ample, for any I-hody phase function ¢ (g, ) we have

by 0130 = [ g dped (q, p) ot (g, p, 1), (3.4,3)

Lising (3) and the lmcarity of the expectation value aperition,

N
<:§I ¢ (n;, Fr}>' = Njn'{i (g, p) o (qpotd (3.4.4)

® This restriction is mude only for convenlence. The enlire presentation may be ensily
generalized to the case of an arbilery classical system, possessing fdegiees of (reedon,
=* Thus the number of degrees of freedom is = 3N,
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s0 that from ¢'** alone we can find the expectation value of sny phase funec-
tion of the form:

L)
d{x) = .E. & (g p)- (3.4.5)

Any phase function of the form (5) is called a sum fiumction.

Similarly, we can answer questions about any pair of pariicles by means
of p ", Furthermore, from o'*" we can find the expectation value of any phase
funition ol the firm

5 = }I_ gfﬁ (s @0 0 P2)- (3.4.6)

Since most phase functions of interest in statistical mechanics have the form
() or (6), and since (see Section 3.5) we are usually interested only in expecta-
tion vilues, we da not generally need o know the complete probability den-
sity p (v, 1); the reduced distributions ¢'*? and o'* are sufficient.

There is an interesting relation between pt? and the expectation value of
the number density, By the nomber density we mean a function nlg) such that
the exact number of particles in any region’ R of 3-dimensional coordinate
space is

numbier of particles [ R = J‘ nig) ey, 34N

yu it
The function n(q) is obviously a different function for different phase paints
ap thus we will denote it by n (q; x). Hence the number density is & mechani-
cul phase function, dependent on q as a parameter, The only such function

sulisfying (7) 1%
N

g X)) = nig; g, ..., qy) = '2‘ diq—q).* (3.4.8)

By (4) and (8), the éxpectation value of the particle density, at any fixed point
q, is

e s = N [dp o™ (a.p ) = Mol (g, 1) (3.4.9)
where pi'" is the reduced probability distribution for the position of ong
particle alone.

Now, (9)says that the expected number density is proportionil to the 1-body
probability deqsity. The similurity of the terms “number density™ and “proh-
ability density”, plus the close relation (9) between these two quantitics
makes for lots of confusion between these two radically dilferent CONCEpLs,

* Thus w{q; % is not really & function at all—it t5 8 generalized funciion,
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The confusion is enhanced by the fact (see Section 3.5 that the exact number
of particles

nR: 2 E,[ i g ) (3410
i M

in any sufficiently lurge region R js highly likely ta be approximately el
o the expected number of pariicles in #:

iR )y, = Nf oo (0, ) d = Nt () (R (34T
yr ki

where
| R _——..J iy
I

Thatis, n (R; %) is quite likely 10 be upproximately equal 1o N R ot (q, 1)
(This is true if Vis kirge and R is not too small; see Section 3.5). Despite this
pruhnh_le proportienality between o)’ (g, ¢) and the integrated value (10} or
Al ), the two ooncepts are radically different; n (R, %) is & mechanical
p:l:nﬁc function (or, in probabilistic terminology, a rundom vurinble), whersas
oo (q, 1) is a reduced probability distribution or, by (9), an expectation value.
We may see the distinetion even more clearly from the faet that n g
and #(R; x) both have u meaning within exact mechanics, while o)'! (q, 1)
has a meaning only within u probabilistic deseription of mechanical syslerns,
The conceptual difficulty raised here is typical of difficulties which arise in
statistical mechanios and kinetic theory {pariicularly in discussions of the
Bollzmann transport equation), and for which the reader should be on
guard,

From (2.1.37), each particle iv statistically independent of every other par-
ticle ut time ¢if and only if

gmn=HWﬁme (3.4.12)

As in Section 2.1, we suy particles ¢ and j are correlated it thiy re not sti-
tistically independent. Acvording to the inductive inference interpretation of
probability (Section 2.2), particles / and § are statistically independent if and
nnl].r: ifany new information about particle 7 is irrelevant to prodictions ahou
particle f.

The superficially similur ideas of dynamical independence wnd stulistical
independence are logically distinet; one is a mechanical idea, while the other
is-a statistical idea. A set of particles is dynamically independent if they don't
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exert forees on each other, i.e. if
H{x) = X Hy (g, p)- (3413

They wre stutisticnlly independent il new ditw about ane doesn’t ehange pre-
dictions aboul the others. For example, given two strongly interacting par-
tieles i box, and given the data that q & Ry and gy & By, the appropriate
probability distribution for the positions q; and qy is (sée Section 3.6)

I .
~ (que R, and g Ry
Rk ’

{‘t“ (0. 0:) =
0 (otherwise).

Thits, qy and gy gre statistically independent even though the particles are
strangly intevacting, Aguin, let the system consist of N free, non-interacting
prticles, and let the given information be that the total energy is betwuen
£oand Ea

E, € Spi2m < £y,

Then the particles are correlated; for instance, the new data pf/2m = £,
immediately implies pi(2m = 0 (f # 1), so thal new dato about one particle
is relevant 1o predictions aboul the others, Henee, this system is dynumically
independént but corvelated.

From (123, {13}, and Liouville's equation, we can show thal, if the particles
ape statistically independent at ¢ = 0, and if the particles arve dynamically
independent, then they are statistically independent for all £ Thus, it e (v, 1)
contuins inter-particle correlations then either p (v, 0) must have contained
correlitions ar the Hamiltonian éontaing interaetions. That is, correlations
b fime ¢ arise either from correlations at ¢ = 0 or from interoctions.

We will say that a systent of particles {5 weakly eoarrelated if (12) is ap-
proximately true, i.e. if

plx, 1) =1 E:” (it + el 0) (3.4.14)

where the correlation function ¢ (x, ) defined by (14) satisfies [ e (x, )] dx
< | We will say that o system is weakly interacting if (13) is approxinately

(e, . il
Hix) = S M (g, p) + H'(x) (3.4.15)

where the interaction term H{x) i in some sense small, or unimporiant, com-
pared 1o ZH, (wewill not try to be terrihly precise about this), We can show*
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that, if the system is weakly interacting and i it is weakly correlated at ¢t = 0,
Then it is wepkly carreluted nt any time ¢ siuch that |¢] i€ not too lanze.

E ]} We can illustrate mast of the ideas of this Section with the particle in a box.
From Figure 3.2-1,

ag.

40

{adwwo =L, Cphioy = b2,

and the initinl reduced distributions are as shown in Figore 1. The rov. ¢

. q p
,k ¥ -b i and pare statistically independent at ¢ = 0,
Furthermare, ot the times t, = mLMband ¢, = ml{b (see Figures 3,3-20
fa) (b} ind 3.3-2h),
Figure 3.4-1  Redoced disiributions for q and @ at ¢o= 0 {rf};, = 3L/8, <P>h = &2,
L, = 2L3, {ph, = /12,
afi I
% | Figures 2and 3 show the reduced distributions ot £, and ty, From Figure3.3-2
g and poare correlated at ¢, and ¢y, For instance, the new information that
“p o< Dot " bplics (using Figure 3.3-20) that ¢ > £/2 ut ¢y5 that is, new
information about p is relevant to predictions made about g, so p and g are
. [ correliated,
L -b M
4
P
(a) (b) L
Figure 3.4-2  Reduced distributions for ¢ and p at £y = ml b L
1
& dl‘bF 4
. -y
R . L
£ : b
(o) {b)
Figure 3.4-4  Reduewd distributions for g and g ot ¢ 5ol lh
q p '
4 L . -b b h 4 l Aceording 1o Figure 3.3-20, ot long times (1 5 il (h)
2 & 03 |
} = L.'Izr '{ = [}l
{a) (b) <40 »
Figure 3.4-1  Reduced distributions for g and poat t; = mil /b and the reduced distributions have the forms shown in Figure 4, Thus, the

expectation values “relax" to constants for @ 2 anl (b, as shown in Figure 5.
H

* The easlest way s 1o write pl0) = Hg}"0) + 2e(0y and = S5, 4+ A, and use
G 18 o show that ple) = TN+ rerms of order 4,

6 Hisbun (0124
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Figgore: LA4-5 " Relaxation of g amd op

Mote that, whereas the probability distribmtion p (g, p, £) never relaxes (p
Just continues o stretelointe a fner and e flament, so that oo g (g, pot)
P

does not exist), Uhe expeciition values Cgl, and Cpdy do rélax to conistonls.
This behavior is wypical of stuistical mechanios, wod will be discissed in
detuilin Chapter 5, Once again, we see thal mechanical and stutistical deserip-
tions may be qualitatively different: the underlying (hul unknown} mechani-
cal phase point underzoes periodic motion, while <g» and {p) relux to con-
stonts.

A8 THE EFFECT OF LARGEM

it 1s practically impossible 1o treat systems of more than a few particles by
exaet mechanics, In fact, o fmons and nearly introctable problem of exact
mechanics is the “3-body problem™: three particles Interacting through
gravitational forces. Ever i we could carry out the exact mechanical caloulp-
tions for g many-hody system, it is nearly impossible to experimentally ob-
tain the inital datn (e the precise initial phase pointd regquired for such
caleulations to yield precise predictions. Thus one effect of large & is that
exnct mechanics can no longer be applied, and it becomes necessary (o use
same other soheme, such as statistical mechanics,

We will show in this Suction thai iy guanitities ol interest i stutistical
mechunies are highly predictable when N is large. This is the most significant
effect of large N,

Aceording o the TehebyehelT incguality (2045) 10 an rv. X has @ sl
dispersion o, then we can predict (with a high degree of confidence) that X
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lies within a small vange of m = £X5. As discussed in Section 2.1 (p. 25),
a better measure of predictability is the telative dispersion ofm.*

Many phase functions of interest in many-body systems are sum fune-
tians, of the form (3.4.5). We will show that, if

N
plx )= Hz SOV (4, Pur ) (35.1)
j=

{ive. if p is symmetric and uneorrelated), then the relative dispersion of the

sl funetion @x) = X (g, p) is

L it (3.52)

it iy \."'FI.I"

where o, noel ey e the mean and variance af' @ (g, py) at time ¢ Proafs
Each function ¢ (a;, p,) is an r.v, Under the stated assumptions, these r.v. wre
statistically independent with commaon mean and variance. Their average is
N, e, by (2.1.48), the variance of the average is of (V. Thus the va-
riance of Py is o® = Neri. By (3.4.4), the mean of #(x) ism = Nm, . Thus
etinn 15 given by (2),

Equation (2) says that the relative dispersion of any sum function may be
miide s smll as desired simply by choosing N sufficiently large. Thus, pro-
vided ¢ has the form (1), any sum function is highly predicrable if ¥ is large
enough.

In the more geneeal case that o (x, £) is symmetrid and weakly correlated
{see (3:4.14)), sum functions are again highly predictuble since (2 is still ap-
proximately valid. Recall from Section 3,4 that p (x, 1) is weakly correlited
if o (x, 0} is weakly correlated and if H{x) is weakly mteracting. Mow, for
miny systoms of physical interest there exists a sel of canonical coordinates
and momenti (W, ooy Wao Jp 200 i) such that A (w, ..., Jy) is weakly
interacting. 1t often turns out that the initial diglribution g (Wy, .., Jy, B
expressed in terms of these weakly interacting variubles, is weakly correlated
(for the reason, see (3.6.7)), Thus, in most cases of physical interest, piw; .,
P Jﬂ, 1) is weakly correlated for all ¢, and hence predictions about 1-body
stm functions S (w,, J) are highly predictable. It is fairly clear that we
coulid make o similar argument about “2-body sum functions™ of the form
LA (wy,wy, dy, ), o about Ya-body sum funetions™ with < N, But the
only quantities which are measurable in many-hody systems are n-body sum

* 10 X can take on pesitive or negative vadued, it may happen that s = 0. In {his cose the
relative dispersion is not terribly useful,
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functions withn <€ IV, since other phase funclions are usually too complicaled
to be measured. Thus, we conclude that in mest many-bady systems of plie
sical interest, all measurable quantities are hizhly prediciahle,

Exitmples of sum functions are;

Lotal momentum = X p,,

and, assuming the particles are of equal mass,
center of mass = N~ X q,,

kinetic energy = % p/ 2.

If the systen is non-interacting and has a symmetric Hamillonian, then the
total energy is a sum function: if the particles are pairwise interacting and if
Hix) is symmetric, then the total energy is a “2-body sum function” of the
form (3.4.6),

Another example of a sum function is the integrated number density.
Using (3.4.8) and (3.4.10), the exiet number of particles in the 3-dimensionul
region R, when the phase point is x, is

N L3 N
n{R:.r]=-f dq ¥ d00—q) = 3 j dadn —w) = 3 Oq),
.‘ dm T=1 it i=1

(3.5.3)
Thus n (R; x) is a sum funciion, with #(q,) being the step function
I (g6 )
fla,) = {(3.5.4)
0 (q,¢R).
We can show that, if' p (x, £) 18 symmetric under particle exchange,
o)y = C¥a)) =f ol (a, 1) da;
R
consequently the relative dispersion of fi(q,) is
— pyr < e
js_=[! -P‘hmeﬂ}.r}] (3.55)
ay Fla e R e)
where
P Hq, e R} t} = ' g:” (4, 1)l (3.5.60)
«f B
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Equutions (2), (3) and (5) imply that, if §is large and if 2 ({q, & R}; ¢) is not
too small (specihcally, we must have P ({q, & R} 1) = N7, then the rela-
tive dispersion of s (R; x) is small. In other words, if N is large and R is not
too small, then the actual number of particles in & is quite likely 10 be ap-
proximately equal to the expected number of particles in R,

As pointed out in Section 3.4, the close relationship between g (R: x) and

its expectation value N j ou | (4, 1) dy leads to a certain amount of confusion.
K
It is eusy, for exnmply, 1o believe (mistakenly) that NJ- oy (), O dy is a
v

mechanical phave function, whose value is approximately the number of
particles in R, Tnstead, N-[ st (q, £) dy is an expectation value, whose mi-
H

mericil vilue is highly likely (provided N is large and R is not too small) to
be approximutely equal to the number of particles in R. Thus, it is possible
{but not very probable) that, on any given trial, the exact value of n (R; x)

will differ by a lnrge amount o its mean NJ‘ o4 (0, £) dg. That is, an
&
experimental measurement of the number of particles in & might vield a

number which deviates widely from the expected value Nj os" (g, 1) g
1)

36 THE INITIAL DISTRIBUTION

The purpose of statistical mechanics is to make predictions about mechanical
systems, based on incomplete data. Usually, we want to predict what will
happen at some instant ¢, when the data is collected at some other instant
t= 0. We have seen, in Section 3.3, how to transhite & probahility assign
ment feom ¢ = 0 to 3 in this Section, we find a method for determining a
probability assignment from the given initial data. The basic scheme of clas-
sical statistical mechanics will then be complete, since we will have a way of
translating duta collected at ¢ = 0 into predictions at any other time 7,.

Sinee classical phase space is a continoum, and sinece the datn is incom-
plete, the obvious way to determine P( ;¢ = 0)is through Jaynes' principle
for non-countuble sample spaces (Section 2.4), To apply Jaynes' principle,
we must hirst find the distribution p%(x) which represents complete ignorance.
We will show that, if the variables v are canonical, then 0%(x) = const,; |e,
the cananical variables are the natural variables (see Section 2.4) for uny
mechinical system.
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n order 1o determing o®(x), we will use un ides which hus been stated In
the fallowing way by Jaynes:" “If we merely specily camplete initial igna-
rance, we cannot hope to obtain any definite prior distribution, because such
a statement is too vugue to define any mathematically well-posed problem.
We are defining what we mein by complete ignorunee lar more precisely if
we can specily a set of operations which we recognize as transforming the
prablem inte an equivalent one ..."

Suppose that we are given a closed mechanical system with Hamillonian
H(x), und told only that *5 seconds ago, at f = =3, the exact phase paint
was in the phase space %", That is we have complele ignorance about Lhe
phase paint at 7 = = 5. What can we sty ahout the systemt at ¢ = 07 The an-
wwer is that we cannot say anything about it, excepl that the phase paint is
stillin . That is, we have complete ignorance at £ = 0 (IF this were not true,
then we could gain information about physical systems simply by waiting i
long time, without ever making any measurements ) Thus, p*(x) is a state such
that, if 0°(x) is used as an initial distribution at £, (in the nbove example,
fo = —5) and then translated (by the methods of Section 3.3) inte o distri-
bution at #; (in the above example, 1, = 0}, the distribution at ¢, is again the
state of complete ignorance p®(x). Bul, assuming that & 15 described by ca-
nonicil variahles &, Liouyilles equation (3.3.13) deseribes the time-evolution
of uny probability density. Thus, invatiance of ¢%(x) under Lime-trunstation
implics

[®x), H(x)] = 0. (3.6.1y

We will now generalize the above argument. Suppose thitt we are given a
system which is closed from ¢ = 0 to oo, with Hamiltonian H{x) during this
vime, and that we are given the following data: “Al £ = =3, the exact phase
point was in %, and during ¢ = =35 to ¢ = 0 the Hamiltonian was (2"
(For example, the system during £ = 0 to co might be an electron inaboxin
zero field, and the data might be *'at 7 = —35, the electron was in the hox,
and during t = =35 to ¢ = 0 an eleciric field of 5 voll/meter was dirccted
downwird inside the box".) What can we say about the system at ¢ = 07 The
answer, once agtin, 15 thit we can't say anything about it excepl that the
phase point is still in &, Thus, when we translate the distribution «“(x) from
1y 10ty under the influence of an arhitrary Hamiltonian H(x), the stute of
knowledge it ¢, is still justp®6). Assuming that the variahles x are canonicul,
this implies

["x), ()] = O {3002}

for every possible Hamiltonian H'(x) on .
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Ii the general theory of mechanical systems, any differentiable phase fune-
tion £(x) is a possible Humiltonian, Thus (2) says that [07(x), f1x)] = O for
wvery differeniable fix). But the only differentinble distribution 07Lv)
satistying this condition 1s

a"(x) = const. = |¥]"!

where | #] = j:!.i: is the total Lebesgue measure of & (we assume, for the
mament, that [#) is finite). Thus, ut least for finite |%], the canonical
varigblés are the natural varinbles.

I case [ is infinite (as it always is in clussical mechanics, sinee there is
o i prior boond on the momenta), it is reasonable to take g (v, () as the
limit, as || == @, of that distribution correspanding 1o the given data ona
finite phase space. Thus the nitural viirinhles are the canonical varinbles
even if [4] 1s mlinite,

We will now determine the distribution corresponding to maximum per-
missible knowledge, In doing this, we will find it necessary to use Heisen-
ber’s uncertainty principle from quantum mechanics. Consider a system
having a single degree of freedom. An experimental measurement af g and p
always leads to a result of the form “q lies in the range ¢, < ¢ < ¢a, and p
lics in 1, < p < pg." where the vepreads” Ag = gy — qy sod Ap = py = py
dre nonezero. (Note that the argument thus far does not riely on quanting
mechanies.) Classically, Ag and JAp may be any positive numbers, no maiter
how small, The iden of the uncertainty principle is that there isa timit to the
smallness of g and g, or rither 1o the smallngss of their produet, The
uncertainty principle says that, no matter what experimental apparatus is
used, Ag dp = hwhere his Planck’s constant. If the system has [ degrees of
freedam, then the experimental “spreads™ iy, Apy st satisly g Ap, = b
i = Ly f ) Thus un experimentul measurement can at best determine Hhat

xed, where T
18 = T1 d¢q.4p, = ¥ (3.6.3)

=l

Thus, the state of maximum knowledge has the form
|1 (% ed)
i (v &)

|_|'“{_~;] =
whete |&] = I,
We huve now shiown that, in classical statistical mechanivs, the uncarininty
 [olx) in the distribution ply) is given by (2.4.6), where x represents 1he

canonical variables and where L = I/,
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It appears that if the uncertainty principle did not exist, it would have to be
fnvented in order to make logically consislent use of inductive rensoning in
classicul statistical mechanics! It is true that Jaynes” principle is independent
of the mumerieal valve of the parameter Loan (2.4.6), since (2.4.6) is maxi-
mized whenever — [ p lng oy is. But Jaynes® principle does depind on the
existence of some lower bound £t the phase volime 4] within which v can

be experimentally located. Without such a lower bound the umncertainty:

U(P) is infinite for every continuous probubility assignment P, and hence we
cannot lind P by miamizing L),

The ahove argument leading to the minimum volume (3) taeitly assumes
that the particles are microscopically distingwishoble. But suppose that the
system consists oF & micrascopically indistinguishable paricles. That is, tak-
ing N = 2, suppose that the stite x = (g, q, pop') caniat possibly (by any
miens aviilable to man) be distinguished from the state 2 = (', q. p', P
Many naturally occurring systems consist ol indistinguishable purticles, For
example, a collection of electrons, or photans, or alpha particles, i of this
Lype.

If the system consists of A indistinguishable particles, then the smallest
phisse valume |&) within which we can experimentally locate xis not | = §,
but is instead |&] = &!-#7" For example, taking & = 2, the most precise
measurement possible can only yield data of the form *the two particles are
in a region &, wround (q, g, p, p'), or else they are in s region &, around
'y, 0y p)y where |4] = |#3] = &% Thous we can cxperimentally deter-
ming only thal the particles are within & w &y, where |8, w8, = 240
(assuming & o 8y = 0L Thus, Lhe minimm phose volome 7 allowed by
the uncertainty principle must be multiphied by the number A1 of indistin-
guishable permutations among the NV particles.

In the case of rdistinguishiable species of particles, with &, indistinguish-
able particles of the Ath species (& = 1, ....¢) the numiber of indistinguishable
permutations is N1 N! (for instance, if the system consists of ¥,
electrons and Ny protons, then the number of indistinguishable permutu-
tions is N, ! N1 Summarnizing, the principle for choosing P{ ;¢ = 0) is:

Jaynes” Principle for classical statistical mechanies, 18 ini-
tial data s given relative to o system of cdistinguishahle
species with Ay indistinguishable particles of cach species,

= MNote that f = IN,
w0 We will not worry too much about the possibility thin &, 7 & & 0, bince the sef of
points dg, g, gy 070 on which & and & overlap bs ysually of very smnll pralability.
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and il the varinbles x are eanonical, then the initial prob-
ablility assigiment is determined by maximizing the un-
certainty

Ulo(x, 0] = — folx, O In Y Nt N (x, 0] e

subject to D, where N = Ny + == + N,. (3.6.4)

The basic formalism of classical statistical mechanics is now complete,
since we now have mathematica) roles for translating any given data at ¢ = 0
inte predictions at 1. The two basic principles are (3.6.4), which determines
PUosr=0, and (3.3.3), which deteemines P ;¢) in térms of P{
=10

As an example, suppose that we possess the Tollowing threg measuring
instruments for the particle in a box: A isa light bulb which is on only when
the particle is in the left hall of the box; A, is a light bulb which comes on
whet the particle hits the left wall and tuens off when the particle hits the
right wall (thus M is on only whan p > 0); M, is an impact device at one of
the walls, which measures the magnitude of the momentun with u coarse-
ness b {that is, My indicates which energy shell mb < |p| < (w4 1) b the
purticle i in). Suppose that, at ¢ = 0, M; and M, ure on and M registers
0 < |p| < b. Applying Jaynes' principle, and recalling (2.4.7), the initial
distribution is just (3.2.1). Predictions about future values shown by M,
Ao, and AFy are then mide using the ideds of Section 3.3,

We will present severnl interesting eonsequences of Juynes' principle.

Let the data be E; < H(x) < E;, where E; and E; arc
piven. Then

|7 (e d)
plx, =10 ==
0 (x¢ d)
where o Js the region defined by the data, (3.6.5)

Thig result follows from (2.4.7). The region  is culled an energy shell,
sinee it lics between the two energy surfoces defined by I = £, nnd
Hix) = £,. The distribution (5) is called the microcanonical distribution.
Thus, If we are given the information thal the energy lies in some spécified
range £, to E,, we should base our predictions on the microcanonical distri-
Buticn.
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If the data 15 <Hx) = K, where E is given, then

olx, 1= 0) = Z=Vexp [= 11 (x)]
where
Z = fexp [—FH (x)) dv = Z(f),

and s chosen to satisly the datos The definmg condition
for ff muy be expressed as

E  \nzip
= —— In Z{f). '
Py (3.0.6)
This result is just a special case of (2.4.10). The defining eguation for 3
may be verified by carrying oul the derivative on the right hand side, The
distribution (6) is Gibbs' Gunous canonieal distribution, and 200 is 1he
partition function. Thus, if we are given the expectation vilie of the
energy, we should buse our predictions on the canonical distribution.

Let the data be symmetric with respect 1o the diiferent
particles, and assume that the data is entirely expressible
as conditions on the 1-body probability distribution
o'V g, p t = 0). The initinl distribution then has 1he form

L
2 (%, 0) = J:L o'y, py, 1= 0). (3:6.7)

For the proof, see Appendix B, Thus uncorrelated initinl distributions
arise whenever the dita can be expressed in derms of o' alane. For exan i,
if the data cansists of the expectation values of sum functions (see (3.4,5)),
then the initial distribution is uncorrelated,

Let the data consist of inlormation about the differentiable
and functionally independent * phase functions g, (x), ...,
ghylx). Then o (x, 071s functionally dependernit on the ¢ {v):

g, 0 = g e, ., il vl]. (16.8)

For the proal, sce Appendix B, The number of functions ¢, (1) cannot be
greater than 3f, since the functions could net then be functionally indepen-

* Two Tunctions are Tomet oy iodependent il the nrmericol suloe OF ome of then does
not delermine @ dmgie ounwrical value Tor the othee. Mo prociscly i famslons
Pu iy ceeg b amad sy (g oony oy ) are Tunetfoudlly depeweless if thive exigip o Tunctional
retation Fldy, $2) = 0 Tor wll (g, oo, o). For example, &) = gy and &y = ig,}* are
Tunctiomally dependent, bul ¢y = gy ond @4 = g1 are luncuonally independent,
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dent in the 2f-dimensional space #. As an example of (8}, the data of (5)
invalves unly the eénergy and henee the corresponding distribution depends
on v only through H{x); the same is true of (6}

One interesting and potentially very important application of Jaynes' prin:
ciple concerns the case in which data is gathered over an extended period of
timie rather than at a single instant ¢ = L Suppose that several phuse fune-
fiond i (q; ¥), <., 2 (q; 20, each possibly dependent on a continuous posi-
{ion parameter g (see, for instance, (3.4.8]) have been ohserved (by a macro-
seopic obrerver) at all points q in some 3-dimensional reion R, and arall
times from ¢ = —1 ta ¢ = 0. Assume that N is sufficiently Jarge that the
observed data may be identified with expectation values (see Section 3.5).
The given data then has the form

"

g lqsxhyy = Gul e R —r <t <M, (k=12,...m, (3.6,9)

where the G, (g, 1) are known throughout R and for all times from f= -1
to = 0. Using (3.3.15), the expectation value at time £ s

Con g e = (s x)e (e dy = fae(nix) e [X (= 1]x), 0 d¥,

where X (¢|x) represents the phase point at time f corresponding to the initin]
point x. Under the change of variablesx - v = X (=1]x); we have x= XTt[v)
and (by the theorem (3.3.8)) dx = dy, s0 the above integral becomes

(g (g ) = [ a8l X el)oly, 0) dy.

Thus, we can express the expectation value of g (q; 1) at time £ as the initinl
expectation value of the function g [q; X (|x)), and the given data (9) be-

COLnes
Can s X (1100 = Gyl D {ge R v < ¢ <0 k=1,.00m) (3610

We are now in & position to apply Jaynes' principle to the initial data (10).

By partitioning the space-time observation region (q = R —r1=r<i)
into u lurge number of small gpace-time “cells”, the continuous initial duta
(10} may be expressed, approximately, inthe diserete form (2.4.9), Jaynes”
principle then Jeads 1o an initial distribution function of the form (2.4.10). In
the limit ad the size of the cells approaches zero, this approximation becames
exaet wnd the eorresponding initial distribution becomes®

i il I
giv, ) = A exp -5J rr'q_f ar 'A.lq.:}e:.[q:-‘Hfl-ﬂli- (36,17}
7z 11a g | ]’

4 =g

Fquation (11) is Jaynes” generalized canonical distribution] it represents
a browd peneralization of Gibbs' canonical distribution (6), The generalized
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partition functional Z (the normalization fuctor in (11)) is friven by

o My "
Z 04 @, v 0, )] sfcxn fj dy J' @ Y 20 tq;xm.rn!t i
" o | il
(3.6.12)
The peneralized Lagranpe wiiltiplicrs A, (g, 7) (g e &, ~r£ £ 0) are
chosen 1o satisfy the given data (10). It turns out® that the defining condition
for the 4, (q, r) may be expressed as

&
G[‘-’l-f}=“—"|—“zl LU P

& &A# (qf |'] ! i [:"I 'rj ¥ Ajn {1!- r”q farﬁul:ﬁ
where 484, (q, 1) represents o functional derivative. Bguations (1), (12),
and ( l 3) are a natural generalizition of Gibbs® result (6); we may apply these
cn.:|uﬂunni to any equilibrivin or non-equilibrium situstion for which the
given data has the form (9), Predictions about any quantety S{x) at any time

T* = O are then based on g (x, 1), found by sabving Liouville's equation sulb-
Jeet to the initinl distribution (11).

A7 WHY DOES STATISTICAL MECHANICS WORK

Statistical mechanics is the scheme which has been worked out for making
the most reasonable predictions about the behavior of mechanical systems
based on incomplete information. But ordinary experience sliows that nn:-'
dictions based on incomplete information do not always tumn out to be cor-
rect. Why, then, does siatistical mechanics work?

Suppose we are given initial data D, and that we wish to predict the value
of some phase function g(x) at time ¢ Assunmie that statistical meohanics
|n?ﬂd.s to the conclusion that (on the basis of D) it is highly likely that o(x) at
time ¢ will equal (g3, to within experimental aceuracy. That is, iuuirsg'd be
the experimental ervor in measuring (),

P el = ¢ad) < 8l 0 =1, (3.7.1)

We will then say that the prediction [elx) — <gi| < s highly plausible:
wee have seen in Section 1.5 that most statistical meehanical predictions nn;
of this type. Suppose that we now proceed to actually mensure g0 al time ¢
obtaining a value o, '

Suppase thut g, does lie in the predicted range |g, — el < & This s
hardly surprising; it merely means that an inductive inference which was
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highly plausibile tomed out 1o be correct, But whi was it correct? Well, it
was correct because inductive reasoning usually works. T'o push the question-
ing oné step further by asking “why does induttive réasoning work?"” would
lead us beyond science and into philosophy. In séience, one ordinarily as-
sumes the validity of inductive reasoning, since if inductive reasoning didn't
waork science wonld not be pessible in the first place, Thus, the most complete
answer we can give to the guestion posed in this chapter 15 that sraristical
nigchimics wirks because induetive reasoning works.

Mow suppose that g, does got e in the predicted range, and that on re-
runs of the experiment the measured valuis of g{x) at time ¢ continue to lie
outside the predicted range.® (On each trinl, the data D must be the suime, i.e.
the wngertainties in the initial prepurution muost be the same.) In this case,
thie prediction is experimentally wrong, Mevertheless, it is still true that sia-
tistienl mechanics yields the best prediction (Le. the least bidsed prediction)
possible on the basis of the data, Tn other words, it is not statistical mechanics
which is at fuult; rather, the data is wrong or inadequate, or the underlying
mechanical theory (classical mechonics in this chapter) is inndequate, or else
a mathematical mistake was made in the statistica] mechanical caleulotions
(Tor example, an nvalld approximation of an inconsistent serics expansion
may have been used).

When we experimentally test o statistion] mechanical prediction, we are
not really lesting statistical mechanics; stptistico] mechanics is simply o
special case ol inductive reasoning, and in science one does not ordinarily
test inductive reasomng (although science iselfl 18 1n o sense o test of induc-
tive réasoning). Thus il the measiréd value of o highly predictable phose
funetion falls consistently outside the predicted range, and if no mathematical
errors have been made, then we are foreed 1o conclude that either the data or
the mechanics is inadequate. Statistical mechanics is not invalid in such a case,
far from ity in fact, it is just when statistical mechanical reasoning leads to an
incorrect prediction that statistical mechanics is the most useful, Tor we @re
then in a position 1o learn something new about the physical world,

As a very simple, non-mechanical cxample, suppose that the experiment is
the simultancous tossing of 1000 dice, and that we wish to predict the total
number of spots showing. Let the initinl data be only that each die hos
G sides, with i spots oo the fAlvaide, so that weinitially have complete ignorance
about the owtcome, On the badis of this data, the probability distribution
= 10 ina b noamber of trials only o few moasyred valies foll ouraide the predicied rmpge,

then the pradiétion iy considersd to b correct since the prediciion was nol cerinin anywiy,
Bt weas only highly plaoebie,
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PAiyybayeeny finao) (Whitte 4, represents the numiber of spots showing on the
rih die) must be uncorrelated, since the ditu contiins no information
relating the outcome on one die 1w the owecoame on ancther die. This
Py ope) = ILP(LY, where P,(i) is the probability. distribution for
i single die. The distribution P (4) satislying Jaynes' principle for the given
datn is just Pif) = /6 (i = 1,2, ..., 6). This distribution has mean and
viartnce pty = 3.5, af = 2750, Thus the total number of spots has mean
and vatiance m o= 1000m, = 3500, 0% = 1000 o} = 2750, The dispersion
1@ = 30, By the TchebycheT incquality, the prabability that 1he tolal nuin-
ber of spots will lie outside of the range 3300 1o 3700 is less than 1/(4)*
= 06.25%,. The probubility that thee result will lie autside the rHnEe 300 10
3900 is less than 1(8)* = 1,59, Thus, on the basis of the data, jtis highly
likely (more precisely, the probability is greater than 95,5 ) that the total
number of spots will e the range 3100 1o 3900,

If we now carry out a trial and obtuin, say, 3471 spots, everything is fine:
inductive reasoning led to o corfect prediction. But suppose that the first
trinl yields 3958, the second yields 4032, and the third yields 4010, Then
something s upparently wrong; since all the results lie outside the "high
probability range™ 3100 to 3900, There seems to be something in the experi-
mental sitpation which has o bearing on the anteome Bt which is ot re-
Hected in the given ditu. Thus, we aeg led Lo éxamine the expecimental situa-
tion more closely. Perhaps when we do we will discover that the dice are
weighted in such 4 wiy that only even numbers can come up. The single die
probability distribution satislying Jaynes” principle for the new data i then
Piliy = 1/3(i = 2,4, 6), und P, (i) = 0 (i = 1,3, 5) This distribution leads
o a mean value of 4000 for the total number of spots showimg on 1000 dice,
s0 that the outeomes 3958, 4032 and 4010 are reasonable on the basis of the
new data,

Again, suppose that the first trial yields 1000 spots. This result is so far
outside the high probability range that we are immediately led to examine
the experimental situation more closely for further relevant dat, Perliagps
when wis dowe will tiscover (it the dice are atbichod Lo one ahother i
such a way that all must show the same number of spots.

Thus even when highly plausible statistical mechanical predictions turn
ot Lo be experimentally wrong, they are still useful beenuse they cnable 1le
observer to learn something new, For example, the incorrect statistical mecha-
meal prediction of the blavk-hody radintion curve provided one of the i
indications of the inadequitey of clussical mechanive,

To sutnmarize: stutistical mechanics works because (a) most quantitics of
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physical interest are highly predictable on the busis of the experimental data,
and (bY i is 2 Tuer (of science and of everyday life) that highly plausible in-
ductive inferences usunlly turn out to be true, and furthermore (¢) even if a
highly plausible prediction turns out to be incarrect, that prediction is suill
[re drest vt condd have been made oo the bagis of the data, and thus an
meorrect prediction enables 1he observer 1o learn something new about the
physical world,

We have not yet disoussed the case in which the daota does not yield a
Nighly plausible prediction about g(x), Such “indefinite’ predictions are
common 1A bs soel, and they may arise even iF N is Targe. For example, the
phase function n (R; %) (number of particles in the 3-dimensional region R—
see Sections 3.4 and 3.5) is indefinite even if ¥ is large, provided only that £
is aulficicn Uy smally in this case, statistical uncertainties are experimentally
fmpartiont dnd are usually called demsity flietiations. .

If the prediction about gie) is indelinite, then we may proceed in any of
severn) different ways, We may just forget the whole question of predicting
glx), Or we mny gather more data, in the hope that @ highly pliunsible predio-
tion will bie possible on the basis of the increased data, Or we miy |‘11qu: f
Jurge number of separnte trials, with the same data (e, the same initial pre-
paration) on each teal, and check the arerage measured value € agmins
(o sinve aeeording o (2.0.47) and (2.1.48) § is highly likely 1o be tearly
equal to g5, Finally, if we cannot gather more dita and yet want to make
a prediction about g{x) on a single trial, we are {orced 1o put uurlrnloncg on
thie most probable range of values of g(v), realizing that our prediction miuy

be wrong.

3.8 EQUILIBRIUM

A elassical mechanical system is in statistical equilibrivm (or simply
ciquilibrium) at time ¢, i o (v, 1,) depends only on the constants of the mo-
Hom g fek ol

O E 0 IR (N EY P A B 1 B (38.1)

By (3.3.16), Fld;(x), ... dhdx)] satisfies Liouville's equation. Hence if the
gysten s in equilibriom at £, its probability distribution will remain constant
nitil we either obiain new dati or ¢hange the Hamiltonian,

Sinee o s timesindependent at equilibrium, all predictions aboul the system
must also be time-independent. Nate the distinction between mechanicul
equilibrium (which means that the exaot phase-paint is time-independint)
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and statistical equilibrium. For example, a box of gas may be in stubisticn]
cuilibrium even though its particles are in cpid motion. Apparently, equi-
librium is not so much a property of the system s it is a property of the
observer (Le. of the observer's data),

Returning to an example mentioned in Chaper 1,00 @ eoncentration of
gaseous O js dilTusing in o box of puscous 075209005 quite possible for the
system 1o be in equilibrium with respect to an observeér who is unable Lo
distinguish the two dsstopes but out of equilibrium with respect 1o an obsers
ver who is able o distinguish the two isotopes. It is meaningless to ask
whether the system itsell is really in equilibrium.

According to (3.6.8) and (1), the precise meaning of equilibrium is that the
observer’s datn refers only (o constants of the motion.

Most of the equilibrium disteibutions used in statistival mechanics are
dependent only on H{x). The reason is thal Hix) is practically the only con-
stant of the mation which is sufficiently simple thut itcan be measured. Other
candidates are the linear and aogular momentom, but these wre constanis of
the motion only if M{x) possesses translotions] and rotational symmeétry,
which it ardinarily does not.® In fact, as discussed in Section 3.3, o recent
result by Sinai® indicates that for most systems, thete may not even exist any
constants of the motion other than I x).

Amoeng all the possible energy-dependent equilibrium distributions, the
most papular are the microcanonical distribution gy (x) (see (1.6.5)) and 1he
canonical distribution o, (0) (see (3,6.6)). (Another widely used distribution
i the grand canonicul distribution, geperally reparded as being applicable (o
systems which can exchange particles with the external world. We will not
disciiss this disteibution.) The microcanonical disteibution 15 generally res
garded as being applicable 1o closed sysiems (i.e. systems having time-
independent Hamiltoniuns), while p,,, 15 regarded as being applicable to
systems in weak interaction with a second system, where the interaction is
time-dependent but random (i.e. not precisely known),

Itis casy to see why g, is applicable to closed systems. 17 we can measure
anly the energy, then ourduta is of the form [ Hx) — E| < 8, where Eisa
measured number and & is the experimental error. By (3.6.5), this leads
direcily to g,

The wrgument leading 0 g, 15 not a8 simple, since systems with time-
dependent, rendom Hamiltoninns are not as simple as closed systems with

* For instance, the Hamiltonian for N particles confined to an immmvible bos does not
persess (runslational o rotationnd symmetcy, The bog peonoves U symiiiny,
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known Himiltonians, Let v denole the phise point of the system ol intérest,
fet % denote the phise point of that part of the external world with which
the system s in interaction, and assume that the total Humiltoninn of the
system-plus-extermal-world has the form

e b, ) = M0N0 + A (x0T gla) (383

where the inferaction teemy Hy (x, x') is in sonie sense weak of unimportant
compared 1o Hylx). The exact Hamil andan for the system of interest is then

H v, th= Hulx) + Holv, 200, (3.8.3)

where (1) is the precise (but unknown!) phiase point of the external world,
Thus; the system of interest has a time-dependent, random Hamilicniin.
Suppose that we measure the “internal Hamilionian™ Hglx), -.1hl.uill1ing the
number £, (experimental ervor will be neglected for simplicity); Since _lhr.-
syaterm is not ¢losed we have no reason to believe that further triaks will yiekl
the same number &, , so we proceed 1o carry oul & series of trials, obtaining
By By, o By 1T the trinls are considered (o be statistically independent,
and i is large, then (see (2.1.47) and (2.1,48)) the nverage value E= XEn
is riearly certain to be approximately equal to {Hy(x)3. [t thus seems reason-
able to take ¢ Hy(x)y = £ as the given duta concerning Hy(x). By (3.6.0),
this leads 10 o,,,00) with H(x) interpreted as the internal Hamiltonian Hn{::.-j.
Finally, if the interaction H; (x, &) is sufficiently weak, then the firse trial
value £, should be nearly egual, with high probability, to E Thus we ¢an
use the duta £, = <H )y, withont carrying oul i whale series ol trinls,

The microcanonical distribution contains correlntions, regardless of 1he
forin of the Hamilionian. For example, let the datu be |H{x) — E| < 4, und
ler Hiv) = '-“:Ilg.“?”l 4 VAl -0y Qu), where 7 is i non-negative function,
The new data pi/2m = £ then implics pii2m = 0(i = 2, ..., N}, so that new
information about one purticle affects the peedictions about all the others.

From (3.6.6) we see that g, is uncorrelated il the particles ure non-inter-
aéting, and weakly correlated if the purticles are weakly interacting.

Often, N Is large and the particles are weakly interacting, Then, us will .hc
expluined below, o, and p,,, are nearly identical so that we may use Denn for
most purposes even if the system is closed. (10 is usually more uunwum]l L1
work with g, than with g, due to the simple dnalyt ic prnpc?tlu.s utdtlm
expanential funetion.) The reason for the stmilarity of the two disteilautinns
is as follows: 10 the particles are weakly interacting, then pe,, 18 weakly cor-
related. If Nis large (one mole, N = 6% 107, should be large enough!]) then,
from Section 3.5, the dispersion in J{x) is small, Thas 1he Tehebyehell in=

T Flohson gh32d)
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equlity (2.1.45) inaplics thitl gg,, 5 highly concentrated near the energy sur-
face H{x) = £, which is just where pae 18 concentrated,

We can generalize the above mrgument: Let the data be [glx) — G| < &
(j=1,..., k), where the g(x) are (ut Tedst approkimately) sum funetions of
ihe form (3.4.5), and where the G are given numbers and 8, is the experi-
mental error in measuring glx). By (24.7) the appropriate distribution is
the “generalized microcunonical distribution” o020 corresponding to the
dati. Lt gyeun(x) be the *generalized canonical distribution™ (2.4.100 corre-
sponding 1o {g{x)y = G (= 1, ... k). IT Nis sulheiently large, the arpu-
ment given in the preceding parageaph trmplics 1l g, and gy, e nearly
identical, and thus for moast purposes we can use gy, in place of g .. This
result expluins the great populurity of generalized cunonical distributions for
many-hody systems.

Far our particle in a box, the only constant of the motion is the enerpy
22 2me . Thus all equilibriom disteibations ace of the focom A p*). For example,
the data [p| < & leads (o the equilibrium distribation

(2L (lp| = b)

olp ) = {ﬂ il > B).

[Tthe data cannol be expressed o terms of p?, then the distribution will nat be
an equilibrivm distribution. Thus un observer who measures the system with
the instruments M, M., My of Section 1.6 will say that the system is not
in equilibrium, whereas another observer who measures the system with
only M, will say that the system i in equilibrivm. Cnee again, we see that
equilibrium is not so much a property of the sysrem as itis of the dara.

38 THERMAL EQUILIBRILIM AND THE SECOND LAW

Far the present, we will restrict the second low and the entropy concepl to
thermal equilibrium situations; we will give & more peneral discussion in
Chapter 5. In order Lo discuss the entiopy, we st est presedl o few ideas
from thermodynamics.

Consider o muny-body system camposed of r species of particles, with
N (= 1,2,....r) indistinguishable particles of the kth species, Lotthe
system be confined 1o @ contumer of velume F. As discussed in the previous
Section, typical equilibrivm data For such a system is (M) = £ We will
asstume that, in addition 1o the data (> = £, the porameters 1V, N
Ny ooy Ny frequired Tor knowledge of the Hamiftonian funation) are known,
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The set ol particle numbers Ny, ..., ¥, will be abbroviated {N,}. For sim-
phicity, we will nssume that ¥ and | ¥, } are the only parameters which need to
be specificd in the Hamiltonian, According to (3.6.6), the canomcal distribu-
Lion

Pl ¥) = Z7V(A VAN exp [=F (e V, {ND]L (39.0)

Z{H VAN = [exp [=f 1 V. (N, (3:9.2)

deseribes the data, where we choose §# = 1 (E, F, {N,}) to satisfy the data
o= O 1, [Ny, and where we have explicitly inéluded the observible
pavamelers i the notation.

Thermal equilibrivm ineans any situation in which the known data is
CHixYy = E plus all parameters needed to speeify the Hamiltonian, Thus,
e canonical distribution deseribes thermal equilibrivm, Eguilibrivm thermo-
dynamies (or simply thermodyonaimivs) means the study of the behavior of the
data (or thermodynamic variables) £, ¥, iV, when a many-body system
is taken from one thermal equilibrium state to another.

More preciscly, let the system be described at time 1, by (E,, V., {N)).
At some tme ¥ = f, let some consteaint which had been present at ¢ be
changed (For instanee, g wall might be moved). We then lind that, at time
ty & 1, the only data which remains useful are the new values (£, V5, (N ])
of the thermodynamic variables. The system is then said 1o have velaxed back
to thermal equilibrivm, and the tine for this to oceor is called the relaxation
time. This reloxation 15 an experimental fact, known as the zeroth law of
thermodynamies; its explanation in terms of statistical mechanics will be
piven in Seetion 5.2 Thermodynamics then means the study of the relation-
ship between the final thermal equilibrium state (E;, Vs, (¥ and the
initind state (5, Vo, AN D). The idea of thermodynamics is to predict the
final state, given the initial state and given the changes in the constraints,
Equilibrium thermodynamics makes no attempt to describe what happens
dirine the change from the inftia] w the final state.

We may stide the fumous second law of theomodynnmics in the following
wiy s Assume thint, doe 1o wehange in the constraints, the system evolves from
the initind equilibrivm state (£, ¥ NG to the final equilitrinm state
(Ey, Vi, AN ). Assume, for simplicity, that the change s small Let 41 be
the macroscopic work performed on the systém during the change:

B = Fong - 38, (3,9.3)

where F,. is the observable foree acting on the system, and dsis the (small}
displacement through which this foree is moved in changing the consiraints,
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Cibviously, there may be farces on the system which the ahserver cannit
measure, i.e. which are not included in Fog. Thus, o pencral a0 # 3L,
where 0FE = K, — A,. The work

80 = dE — B (3.9.4)

done on the system by the non-observable forces i called the heating (or
“heat added to the system”—an unfortunate terminology), Note that 40 is
macroscopically measurable since &£ und W pre, The scoond Jaw then
states that there exist thermodynamic variables (i.e. functions of £, 1, LN
TAE, V, {N)) and § (E, V, {N,]) such that, 1o firstorder in small quan-

titles
Ty 88 = 80|T, (3.9.5)

with equality it and only i the chinge n constraints s carriad oul very
slowly, Here, 08 = §(Ey, Vi, [Nad) = STEL VL N ) i the change in 5,
and T may mean cither 700 Vo IV ar TOE Vi AN The Tune-
tions & and 7' satislying the second faw are culled the thermodynamie entropy
{or simply entrapy) dod the temperature.

The main assertion of the second law is that there exist functions S (E, ¥,
{ND) and T(E, V(N ) having the property (3). Thermodynamics says
nothing about the form of these functions for any particular physical systeos.
Given simply that such functions exfst, practically the entire structure of
thermodynamics follaws,

I follaws from the canonical distribution (1) that functions 8 and T having
the desired property (5) do indeed exist, and in fiact are given by

S(E, V, (N = =k [ peunl) In [N N pean(®)] e (3.0:6)

T{'E-‘l V’l‘ INI” - [1'}1]

kff (E, VAN
wheére N = N + == + N, and where k may be any positive constant i de-
termines anly the units of 8 and 7, and is conventionally tnken 1o b Bolte-
mann's constant), The proof of this statement (e, the proaf of the second
low) will be reserved for Chapter 4, where the quantum statistical version
of (5), (6) and (7) will be stated and proved.

It is important to keep in mind that, despite its name, thermodynumics
deals only with equilibrium situgtions and hence 15 nol a dynumienl theary

= Eqguation (4), which says that the votal work 82 -+ 8 B egualy the inerease in energy, s
known a8 the first law of thermodynomics. 11 s & conseguance of the principle of conserva-
tion of energy.
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at il This, statements aseribing a dynamical significance to the second liw
are incotredt, Tt is true thit the se¢ond law implies that, for any udinbaticully
closed system (e, such that 40 = ) undergiing the change (&, . ¥y, N0
to (Es, Vi, {M2]), the final entropy is greater than ar equal to the initinl

entropy: S, =8, i 60 =0. (3.9.8)

But this does not say that “the entropy alwiys increases with time"', or thut
“{he entropy reaches o maximum at equilibrium™. Tn fact, the entropy 5
defined only at equilibrivm and hence cannot “dlways increase with time,"
{he entropy has no meaning ontside of equilibrium, and thus cannot “reach
a maximu ut equilibrium”. The reader is advised to bewure of such state-
meiks i thie literature,

In Chipler 5, wo will generalize the entropy concepllo non-equilibrium
sitnations. The new “generalized entropy™ S(t) will then be u dynamical (i.e.
time-dependent) guantity, We will find that S(1) does ngree with the second
lw of thermodynamics, but that (1) is nof necessarily mnotonically in-
crensing function of time. As noted above, this is not a contradiction,

We will now discuss the meining of the thermodynamic entropy and the
significance of the second law.

The entropy depends anly on £, 1, (AL, and i hence an ohservable (ie.
a function only of the abservable data).

By (6) and (3.6.4), S/k is just the uncertninty associited With gueq. Bul pegn
itself urises when the data is (E, 1, [N}, Thus, aside from the constunt &,*
the enreopy SOE, VING) v e ahaerier s certainty abont the phase
point x,0% when he knows only the macroscople data E, V, {Ny}. Thus, the
entropy has a very simple, direet meaning in terms of pnoertainty.

The sécond liw says that if a small change of constraints results in heating
80, then the observer's uncertuinty aboul x increases by mare than 607,
[n the case of an adiabatic process (i.e. one in which only the observable
forces do work, so that 4@ = 0), the uncertainty must increase, or at best
comain constant, Thus the second luw has a very simple interpretation: A
croscopie observer, whose data iy restricted fo the thermodyinamic ehaero-
ablex, can hever gain information about x by manipulating the constraints in an
adiabatically closed system; in fact, he will necessarily lose information tinless
hie maipidates the constealngs veey slowdy.

o fecul] fronil Section 2.3 that the uneertaingy s viigue ol w10 b positive il plicalive
consanty & merely changes the wnils of anedriiingy.

** More preclicly, 314 the obagever's uncertdinty about which phase region of measurs
@) = Nyt N the phise point lies in] see Section 3.6,
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For example, in the free expansion of a gas from valume Py tovalume 7,
we have 45 = (1 The entropy merease refloets our increased nncertiinty
about the positiong , ..., gy of the particles: initally each particlewas known
to be in a box of valume ¥, while finally each particle is known to be in i
turger box of volume V.

As another examphe, i(Fwe potinto thermal contact fwo boses of ideal gus,

initially at tempernatures T and Ty, the zeroth law implies that the boxes will
attain a final equilibrinm state in which cach Is wl the same rémperature 7.
Agsuming that the total system is adinbatically enclosed {ie. 40 = 0, i.c.
40, = =40y, i the only non-obgervable work is done by ane box on the
other), the second luw implics that 45 = 0. The entropy increase reflects our
Incrensed uncertainty about the velocities of the particles. For instance, if
we are initially asked to reach into the system and pull dut o paricle moving
Fuster thun the median specd, we have better thin a 50% ehance of sucoeed-
ing by reaching into the box huving the highest temperature; if we are asked
to perform the same task after the new equilibrivm state has been attained,
we have only o 50% chance of succeeding. Thus we know mare about the
initial velocities thun about the final velocities.

Many physical scientists find it difficult (o understand, ar interpret, the
entropy. 1t is not difficult to understand an observable like £; since £ is jusi
the expected vilue of the phase function H{v), £ has o miceascopic inters
pretation, or mechanical interpretation, as the mechanical energy. Similarly,
parameters such as ¥ and [N} have meanimg even at the microscopic level,
The entropy, on the other land, is u purely statistical coneept, 1L his oo
interpretation s a mechanicul phase function, or as the expectation value of
a mechanical phase function,® or as a parameter in the Mamiltonian, There
is no microscopic, mechanical quantity corresponding to the entropy. Thus
one will never understand the entropy i one insists on understanding it in
mechanical terms. The entropy cannot be understood in mechanical terims
because il has no meaning except in connection with a probability distribu-
tion; it is meaningless to speak of the entropy of a precise mechanical stute x.
In order to emphasize the correct stutistical meaning of the entropy, it might
be helpful to speak of the “entropy of the daia™ or the “entropy relative 10
the observer'” rather than the entropy of the siwtem.

The interpretation of entrapy a4 uncertuinty is sometines objected to on

* Itidstruethit S1s, Formally, the expectation value of dls) = =L n AN 1 Noogaatxil.
Bul $lxh is not really o mechunion] phase fonetion, sioge g, G evaluated af the presise
phuse point x{r) of the system ot tine ¢, does not deseribe apy mechanical property of the
systerm. Tnsteadl, the entive fanerion g, ,(x) describes the observer’s data.
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the grounds that the entropy then becomes o subjective (ie relutive to the
ohserver) notion, whereas octually the entropy 15 an observable properly of
any thermodynamic system. This argument appears to stem from the view
(incorrect, in the author’s opinian) that eviry obseryable quantity must have
a purely mechanical interpretation. The entropy is an observable guantity
e a quantily whose value is determined by the observable dita £, 1, (N )
which does aor nve o mechanical interpretation, For iny measured values
af £, ¥, {N,|, the entropy takes on a perfectly well-defined, measurable
value 8 (E, ¥, {N,}), the same for all observers possessing the same data.
Thus the entropy is nat really subjective (i.e. relative to the observer), but is
instend relative to the observer's data. Tn fact, we might argue that obsery-
able quantities such as the entropy are truly objective, whereas such mechan-
cul notions as phase Tunetions and phase points are metaphysical or sub-
ective, since for miuny-hody systems Uiy cannot really be measured.

An interesting point, Known as Gibbs™ paradox, gives a furiher illusira-
tion of the non-mechanical nature of the entropy. Consider two ideal gases A
and Bin separate containers. For simplicity, et A4 and B each huve the sume
emperature 1, volume ¥, and number of particles V. Let the particles of 4
be distinguishable from the particles of B, Tt can be shown that, if we allow
the two pises to mix by removing the partition between the twa containers,
AN ENITORY INCrcase

8y = 8, =2%NIn2 (A und B distinguishable) (399

oceurs, where 8, and 8 are the total entropies of the cquilibrium states before
and after removal of the partition. But il the particles of A are indistinguish-
able from the particles of &, then no ohservable change ocours when the
partition s removed, and so

5 — & =0 (4 and B indistinguishable), (3.0.10)

Thus an entropy increase A5 = 2kNIn 2 (called the entropy of mixing)
oceurs if und only il 4 and B are distinguishable.

Haquations (9) and (10) are sometimes considered o be paradoxical sinee,
no matter how nearly identical A and 8 might be, as long as they are the
least bit distinguishable, 18 = 2k¥ In 2; but when they are indistinguish-
alile, 18 sddenly junmps 1o zoro. 10 we consider S 1o be o mechanical quan-
tity, then it does indeed seem unreasonable that S should suddenly jump by
the large wmount 280 In 2 when the anture of the system is changed by
anly wamall amount (from prearly indistinguishable species (o fadfsinguishable
species), ut if we interpret § as the observer’s uncertainty ahoul x, then the
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jump seems reasonable since the data wndergoes a discontinnity:; 1T 4 und 8
are distinguishable then (no matter how oearly wentical A4 and & mught be)
the initial data is * N pactiches of type A are in box A, and N particles of type 2
arein box B0 Aand Bare indistinguishable, the fnitial dita is * N particles
dre in box A and N particles are dn box 8™ In he distinguishable case, we
Know initially wlich particles are i which box, while in the indistingiishahle
case we do not. Thus, in the distingmshable case we lose information when
the gases mix, while in the indistinguishable case we do not.
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CHAPTER 4

Quantum Statistical Mechanics

41 THE PROBABILITY ASSIGNMENT

CUIANTUM STATISTICAL MECHANICS I8 the scheme for dealing with quantum
mechanical systems (Le, systems for which quantum effects are important) in
Lermms of mformation which is incomplete (e less than is perniitied by the
laws of quantum mechunics), For quanium systems, complete information
allows us to determine u quuntum state. For a system of spinless particles
having f degrees of freedom, a state may be represented by a wave function
YAGy o very i), 0F in Dirde notation by a vector |'4'3 in the abstract vector
space cornespionding to the system. Henceforth, we will use the vector space
formulism, This formalism Is convenient for the same reason that the phase
space formalism is convenient in classical statistical mechunics: the formalism
encourages usto think of a state as a single object (a multi-dimensional vector),
g0 that o probability assignment over a set of states is not difficult to visualize.

A complicating fealure of quantum statistics is that evén when we have
complete information, we still cannot make precise predictions about the out-
come of all possible measurements on the system. Even when | is known,
there remains some uncertainty in the predictions. Now, statistical mechanics
deals with incomplete information; for gquantum systems, incomplete in-
formation means that we cannot even deterinine |45, Thus, there are rwo
sources of uneertainly, and two kinds of probabilistic considetations, in
quantum statistics: the statistical mechanical uncertainty concerning which
guantum state the system is i, nod the quantum mechanical ancertainty
which exists even when the state 18 known,

A complete desoription of @ quantim system is called a state or pure state,
and 15 represented by u normalized state vector (¥ . An incomplete descrip-
tion is called o mixed state. Note that itis not really the state of the system
which is “mixed”, since the system is always in some definite quantum stile
|'5: the only thing that is “mised” is the observer’s data about the state®

* 11 miy evien be hit d precise guantam state | is nor so much o property of the sysiem
il s 0 00 o peesperty of Phe olserver's dir nbout the system. This qoestion belongs 1o
the Togndutioss of quantom theory and will not/ e discussed hers,

93
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As in clagsical stutistics, inductive infererice and hence probability theory
are called for if the descniption of the stole i icomplele,

It is fairly clear that the appropriate choice of the probubility space 5 (sce
Section 2.1) 18 the set of all vectors{% s representing physically possible staes
of the systent, Thus, & cantains all thi normalized vectors |15 in the veetor
space of the system. (In cuse the system contabns indistinguishahle particles,
K contuing only the normalized and progecly symimeteizod vectors; see Sece
tion 4.4). Henee, & is o continuum. However, as we will see, fuantum sli-
tistical probability assignments on # are generally discrete, so we may take
the figld of events F (see Section 2.1) as the collection of ll cowntable sets of
vectors in &, That s, an event  means a countible set of vectors of &,
and F consists of all such events . Finally, a probability assignment P means
an assignment of a probability P8 to every & e 1,

In science, information is always obtained by making measurements. Ac-
cording to the theory of quantum mechanics, whenever we use in apparatus A
to perform a quantuit mechanical measurement, the quantum state of the
system immediately after the measurement must be one of the eigenyecion
|4 correspanding to 4. That is, letting A represent the vector space opera-
tor corresponding to A, the state immediately after measurement must be one
of the vectors |4, satisfying

AlAS = AjlA).* (4.1.1)

For most measuring instruments A, the “spectrom’ of possible mensured
vitlues A4, is countable, so thut the index ¢ ranges over a discrete set. Accord-
ing to guantum theory, the set {|4,5} of eipenvectors of A is complete and
arthanormal. That 1s,

ZlAp A =1 (4.1,2)
where 1 is the identity operator, and
Cy | Ay = &y (4.1.3)

where & is the Kronecker della,

Rather than measuring the system with a single apparatus, we can make
a simultaneous measurement with several instruments A, 8, €, .., provided
the corresponding aperators A, B, &, ... all commuie with each other:

(4, 8] = AB — B4 =0, eic. (4 1.4}

* Wewill wse the notation of (1) throughout this book: the eigenvecton of A having ciisen-
vilue A will b denoted |4, 5.
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ifthe set A, B, &, ... is a so-called “complete set of commuling operators’”,
and IFwe know the precise numerical oweome (4, 8;, C,., ...) of the mea-
stirement, hen we Know the system to be in the quantum state |4, 8, Cy -
afier the measurement. Thus, we obliin complete quantum mechanical in-
Formation by precisely measuring # complete sot of commuting abservibles.
But i (as 15 nearly always the case with experiments in the real world) we do
ot measure a compleie set of commuting operators and/or we do par know
the precise numerical outcome of the measurement, then we do not know the
quantum state alter the megsurement, In this case, we must resort to induc-
tive reasoning, i.e. we must describe what we do know about the quantum
state by means of a probability distribution over the various states which
the system might be in. We call such a probability distribution a mixture of
Blilcs.

Suppose that we carry oul & measurément with an apparatus A, but that
we do not observe the precise outcome of the expetiment, Le. we do not
know which of the possible outcomes A, actually gecurred, We do know,
from the general theory of quantum mechanics, that the system is in one
of the emmensinies |45 afier the measurement; our problem s, we don't
know precisely which one. Thus, our data may be described by a mixture of
the form “the system is in state | 4> with probability p,”", or more briefly
ey, po) o where the states |4, are eigenstates of 4 and hence form a com-
plete and orthonormal set. In Section 4.4, we will present the method of
determining the probabilittes gy corresponding to the dota,

Meste thit even though the probability spage &' is o continuum, the prob-
ability assignment P is diverete; e on the basis of the experimental data,
the states having non-zero probability form a discrete set. For any |'F) e &,
if 'y is mar one of the eigenstates |4, of the instrument used to oblain the
data then PIUWY) = 0, while it | = |4,% then P(Y¥3) = p;. Recall that
an event & means pocountable set (195, 1953, ...) of vectors in &, Thus,
for any &, P(4) 15 the sumn of the probuhilities of all the eigenvectors |4, e 4.

Since the possible states |4, are orthonormal, it follows that the mixiure
Ay, pit cotresponds sndgeiedy 1o the operttor

6= X |4 p LAl (4.1.5)

that is, two miktures {[A, p,} and {[[B,5, p'] are identical if and only if the
corresponding aperators § = X |43 pe (A and & = X | By py (8] are the
same, Thus, vather than speaking of the mixture {|4>, o}, we can speak of
the mixture 4 Theoperator § is ealled the density operator corresponding 1o
the data,
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The role of § in quantum statistics is anulogous to the role of @iy in
clussical statistics: ¢ determines the quantum probability assignment by
giving the probability P()% 5) of each state [W5 &2, while olx) derermines
the classical probability assignment by giving the probability denisity at any
stite x e 27 Such anulogics occur oflen in statistical mechaonics, and are
helpful in understunding both quintum and classical statistics. The reader
is encouraged 1o lind as muny analogivs as possible belween Chapier 3 and
the present Chapter,

Quantum mechanics corresponds to dita of the form “the state is |4
with probability 1", so thal we may think of quantum mechanics as a special
case of quantum statistios with density operator ¢ = [ (W[, Such a pure
state density operator is just a projection operator; & more generul mixed
state (5) is a sum of weighted projection operators, with weighting factors py.

Consider the pure gquantum stute

[y = Xg|d>. (4.1.6%

The stute (6) is sometimes described by the stiadement thal e system is in
the state Ay with probability Ja,|*" This description of (6) is misleading,
since it leads one o l':j:r'llit'j!-I the pure state (6) with the mived state (5). In fact,
if the system is in the state (6) then it 15 certainly mof in any one of the states
[y, sinee |4 95 45 The correct way Lo describe (6) is: “The system is
certainlyin the stare |4 5, and i this state the probability that a measurement
ol Awill yield the resull A is |a |2 The corvect way o describe (5) 152 The
system s in one of the states [A; ), but we do not know which ene, and our
knowledge about which siate |4, the system is inis deseribed by the prob-
abilities p,”". The mixed state (5) contains bath statistical mechamical and
quantum mechanical uncertainties, while the pure state (6) containg only
quantum uneertainties. In Section 4.2 we will give an explicit example illins-
trating the quantitative and gualitative differences between (51 and (6),

Tt can be shown that the density operator (5) has the following propertics:
15 Hermitipn (since it ds o sum of welghted prajection opermtors); 4 has

unit trice Ted = 1; 4170

the matrix elements of d in the Af-rcprmulation fhe the representalion cor-
responding to the apparatus A used to obtain the data) are

CA B 1A = piddys (4.1.8)
the eipenvectors and eigenvalies of g are piven by
Gl = pilAo. (4:1.9)
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Suppose we wish Lo predict the outcome of & measyrement mude with the
gpparatus B, when the data was obtaingd with 4 and is described by (5). The
precise outcome s not generally prediclable, and hence we miust base our
predictions on the probability distribution P(8,) of the various possible
values 8, of & According to guantum theory, the B, are the eigenvalues of
the operatar Bearrespondimg to 8, and the probability of abserving 8, ghven
that the system is in the state |4, is

P (B, state |4,3) = [{A| B (4.1.10)
But, when the data is deseribed by (5), the probability that the system is in

the state |43 is p,. Thus (see (2.1.30) and (2.1.9)) the probability distribu-
tiem for the observable Bis

Pty =5 P8 state |45) P (state [A3)
i
= }i: [<A | B py
- {Hklz‘;"h}f’i{-"llﬂl}«

P(B,) = (By|aIBe- (4.1.11)
Llsing (11), the expectation value (see (2.1.39)) of B is
(RS = %_ PURY By = 5; CB G| B By

- %: {-Hlt ﬁﬁ iﬂk).
By = Te(gh), (4.1.12)

Thus, probabilities and expectation values have very simple expressions in
terms of d. Equation (12) reduces (as it must, since gquantum mechnmes is a
special cate ol qu‘mulm statistics) to the correct guantum mechamical ex-
pression (8> = (V| AW in the pure state case § = |3 (V).

42 ANOTHER SIMPLE EXAMPLE

The simplest quantum system illustrating the notions in this Chapter is o
single spin 1/2 particle (such as an electron) in a static external magnelic
field, We will assume the particle to be a pure spin system, ie. we will neglect
its motion in space. The beauty of this system s that its abstract veclor space
has pnly two dimensions, so thut most of the caleulations are easy. We will
describe the quanium mechanics of the system, and then present o quantum
statistical mechunical example:
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The narmalized vectors |4 and [—3 eorresponding to “spin up™ (spin
along the field) and “spin down™ (spin opposite to Uhe Teld) span the veelor
space of the system. Thus & consists of all lingar comblnations

| = ay |43 + aa]-) (4.2.1)
whiere @y and gy moy bee any comples numbecs suel that a4+ fas]® = 1.
MNote that & is a continuum.

Choosing the = axis to be along the field, the FHamiltonian operator is

1 = —yB8.. (4.2.2)
Here, yis the gyromagnetic ratio (ratio of the magnetic mament 1o the spin

angular momentum), 8, is the magnitude of the external field, and &, is the
z component of the spin operator, defined by

B4 =02 hl+3, &1->=(-12h]->  (423)

where & is Plapck's constant divided by 2. It follows from (2) and (3) that

[+ > and | = > are energy eigenvectors, Schroedinger’s squation for the state
|'H(t)y al time ¢ s

1Yy = i % W0y, = -1 (4.2.4)
[

The solution corrsponding to the initial state (1) is
|()> = ay exp (iyBo 1]2) |4+ + ayexp (=ipBy )2y | = . (4.25)

By (1), the matrix corresponding to 4, is, in the energy representation,

fif2 (\] }

(4.2.6)
0 =02

(4) = (

Anather aperator which will be needed is the x component of the spin opera-
tor, defined by the matrix

- (: mz)
i) = (4.2.7
W) o )
in the energy representation. It follows from (7) that the eigenvectors of 4,
are | t
| #lyy = | kD == |
V2 V2

(4.28)

|
[ =gy = RS [+ = —=[~>
V2 V2
with eigenvalues + /42,
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A precise nrensurement of any spin component g, détermines a precise
quantum state, so a single operator 8 forms a complete set of commuting
abservables, 1f ¥, is measured, then the slate immediately after measurement
is the eigenvector [y corresponding to the measured value.

Suppose that the nitial state is given by (1) The prochability distributions
for g, wnd g are then

Pis,=h2) = 1|ay + ay)* = ¥+ Refagal)

Plsg= —hi2) = 4 |a, — ai* =} — Re (u,al) (4,2.9)
P{£= = ﬁ,l'Z} o iﬂ1|=
Ps. = —h2) = |as|*

Thus, when the system is in the pure state (1), all predictions about 5, and 5
muist be based on the probabilities (9),

All of the foregoing is pure guantum mechanics. Now suppose Lot a mea-
surement is curried ot at ¢ = 0 but that, for some reason, the observer
doesn't know the precise quantum state of the system immediantely afier
measurement. We then have o quantum statistical mechanical situation.

&
> e

te B

-----.._____|l | =¥
Hq""““-«-_.* C [+ ar |-
= 3
e B I . VB, e
-—*__"_.::h.. s |" ¥
¥ |

Flgure 4.2-1  An experimental arangement giving rise o mixed stnle

For instance, consider the experimental arrangement shown in Figure 1.
O the left-hand side are two ingoming beams of non-interacting (i.e, widely
spaced) spin 1/2 particles moving in the y direction. Each incoming partiche
is known 1o be in the same spin state (1), Now let the upper beam be sub-
jected to the Sterm-Gerlach apparatus A, and let the lower beam be sub-
jeeted to the Stern-Gerlach apparatus B.* Tn bath A and B, the field gradient

* Hoe Mol | Tor un excellent desaription of idealized Stern-Gerlach experiments,
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Is (o the 4z direction the upper channel (the 5, = + 82 channel) of 4 i
blocked, and ihe lower chaniel (the s, = —&/2 chitineél) of & §s Blocked.

Thus, every particle emerging from 4 is in the state | =% and every particle
emerging from £isin the stare | 4 3. Both beams are now sent throwgh  hird
Btern-Cierlach apparatus © having both channels open and hoving 105 ficld
gracient in the —z direcion, T he sole purpose of C g o seraighien ool the
two beams ond bring Lhem together into a single beam.

We are now asked 1o male predictions about the future behavior ol one
of the particles emerging Trom C 0 we kpos hat the particle came throogh A,
we can assert that the particle is in the stite | = 3¢ if we know that the par-
ticle came through B, we can assert that the particle is i state |+ 20 In prin-
eiphe, we could determing the apparatus (A or 8) through which any given
patrticle passed, But suppose thut ‘we hiave in fact por determined this, We
then know that any single particle emerging fram € is either in |+ 5 or | =3,
but we do pot knaw which, Thus we musl base future predictions aboul the
particle on a mixture of the form [ 43 with probability pi, [ = > with prob-
ability g7 I e incaming state s given by (1) then it seems reasonahle 1o
take po = |ay |3, e = Josl® Owe will justify this choiee in Section 4.4). Thus
the density aperator

o= 4 fai]* D+ | =0 fasl? <=1 {(4.2.10)

deseribes o single autpaing particle,

The two incoming “heams" could cansist ol just a sinede particle, without
alfecting the discussion i any way. Thats, ifa single particle in the Enown
initinl state |77 a8 sent through 4 or 8 and then emerges from ©, and iF the
abserver does not know which apparatus (4 or B) the particle went through,
then the observer's stute of knowledge about the particle is described by the
mixed state (10).

Since |a,|* + Jaz|* = 1,the density operator (1)) has unit trace, m agree-
ment with (4.1.7) The density operator (10) s diagonalized in the 5 repre-
sentition, in agreement with (4.1L.8), Using (4.1, 11), we find that predictions
about 5, and s, in the mixed state (10) must be based on (he proballities

Plo, =1y =12
Pls, = —h2) = )2

(4.2.11)
Pis.

A2y = |ay|?

P (s, = —h2) = o).
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Comparing (9) and (1), we see that there are similurities between the pure
state (17 and mixed state (10) (predictions about 5, are the same), bt there
aré also differences (predictions about s, are different). There is greater un-
certalnty in theé mixed state than in the pure state, since 5, is entirely un-
predictable in the mixed state but is maore-or-less predictable (depending on
the values of @, and ay) in the pure state, This is a reflection of the fact that
(10 contains not only the quantum wneertainty contained in (1), but also the
stutistical mechanical uncertainty arising from lack of knowledge of the
guantim stale.

As un exapmple of (4,1,12), the density operator (10} leads to

Cxd = Tr(i8) =0,
Comparg this with the result
Loy = (_'}fl 'fk]l-F> = R [ﬁ;ﬂ;]

Pt the pure state (1,

45 DYNAMICS OF THE PROBABILITY ASSIGNMENT

Asin classical statistics, quantum statistical data gathered at one time should
be uselul for making predictions sbout other times. The information is pro-
pagited by the dynamics of the system.

Corresponding to the state |'y> at fy, denote the state at time ¢ by
T(r, 1) 10> thus, |43 evolves into |') = T (e, 1) [y during 14 10 1.
The haste dynamical condition on the system is Schroedinger’s equation:

Ay =i L. (@3.1)
it

The quantum mechanical motion defines a one-to-one transformation of the
vector space of the system,

Wi can translate the derivation of (3.3.3) into quantum language, 1o 6btain
the basic condition which the dynamics imposes on the probability assign-
et

o> evolves into |17 during #, 10 f,, then the prob-
ability of |7, > ut 1, equals the probability of %> at 1. (4.3.2

Thus, il the data is described at = 0 by the mixre {1, py}» then the
appropriate mixture ot ¢ iy {70, 0) [V, py}, i.e. we assign thie same prob-

B Hoboaun (0A243
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abilities p, 1o the states T (7, 0) [¥,> bs were assignied to the corrésponding
stades |5 aut £ = 00 In'terms of the density operatar, the initial mized state

B0y = T oy 9| {4.3.3)
evolves into
gy = Z WL P {4, 3.4y
where |'F (1)) = T (0, 0 |').
Using (1) and (4}, we can derive the following evolution equation for g:
il

M) — < [, 1] = 0. (4.3.5)
il fi

Equation (5) is the analogue of the Liouville equition (3.3.13); we will call
it the quantum Liouville equation

The matrix elements for 6(¢) in energy representution have a simple time
dependence:

SIS0 1M = I G [ exp
Proof: By (4) and (3),

Lot urn], (4.3.6)
it

dr) = LNV en> py H0N
- }._. T, 0) |97,y ) AN
J
= T, 0) 60y 71 (1,0,
where 71 means the adjoint of 7. Thus

CHL| G0y [Hyy = CH| T e 00 300 711, 03 | My

ot Sehreoediogers couation (1) Tmplics

T(t, 00 |H = exp (:Fr H'kr) [Ff 5.
Thus

60y = <Hfexn (1 ) d0vesn (L ) 1.
which gives (6),

As in the elassical case (see Section 3.3), the dynamics deseribed by (2) sire
appropriate only Tor translating data ar gy into peedictions ut 0 1 an the
other hand, we obiain new data gt some tme | between fg and ¢, then we
must revise the probability assignment at 1o refiect the new data, Thus @)
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obeys the quantum Liouville equation at all times exoept times 7 when now
data 5 obtined. At such times 1, 4(r) undergoes a sudden jump ar “col-
lapse™. This behavior appears to be simply a generalization of the so-called
“collupse of the wave function” which oceurs in quantum mechanics: when
a system i the quanturm state [P is subjected to o measurement of some
abservable 4 at time f, the stite “callapses™ at #fram |90 1o the cigenstale
[d,5 corresponding to the measured value A4; of 4. We huyve seen that the
quantum statistical explanation for the collapse of a mived state 4 is simply
that new data is obtained ypon measurement, and the probability assign-
ment ¢ must be changed o reflect the new data. A basio question in quanium
mechanics, known as the “measurement problem”, is whether the sime ex-
planation is appropriote for the collapse of a pare quantum state, or whether
it the other hand the collapse of a pure state can be explained mechanically
i termd of the mternction between the system and the measuring apparatus
diring the measurement. We will not consider this question in this booak.
T (he ease ol onr spin 12 particle in a static magnetic field {see Section 4,2),
g has the foue mintrix elements <k 40| L inthe enerpy representabion,
By (4), the matrix elements representing 4r) when @(0) is given hy (3) are

(| |2 =3 IV ) py W) | (4.3.7)
4

For any given 80}, we ¢an find these elements explicitly by using (4.2.5). The
madrix elements may also be found directly from (6),
For example, iF 4(0) is given by (4.2.10) then

plr) = L0y,

i.e. fie) doesn't chiange with time. Thus all predictions are constant in time.

A mare interesting exapmple, suppose that the initinl datu s obtained
by mussiring 5., bul that the precise ouleome (1, = Af2 or 5, = —Af2) 'l
known. Then (see Section 4.1) 4(0) has the form

g0y = |48, = p< +u| + |=5,. > g < =1, {(4.3.8)

where p 4+ ¢ = 1 and where | £5,3 are the eigenvectors of £, given by (4.2.8).
By (4.2.5), the corresponding states at time f are
| BBty | 1 —ty Bt
£ 8 1) = —=exp (.L.E_) |+% £ —=exp (il> |=3.
V2 V2 2
(4.3.9)
By (4),
MO = |45 pCEsatl + =5 ) g =5 tl- (43,10
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Equations (7), (%) and (10) imply that the density mutrix in energy representa-
lion is

l (p = q)expliyBat

rr_itrﬂnm( el

) (4.3.11)
(p—glexp(—ipBat) |

{We could also obtuin this from (6)). From (4.1.12) aleng with (4.2.2), {4.2.6)
and (4.2.7), it follows that

(3,0, = 4 h(p = q)cos (yBsr)
(s =0 (4.3.12)
CHY, = 0.

The expectation values of s, and M are constant, as they should be since »,
and H are constants of the motion (i.e. their operators commute with /).
Thi expectation value of g, is oscillatory, Equitions (4.2.6) and (4.2.7) imply
that §2 = § = (W4) 1, so that (s3y = (ofy = A4, Using (12), it follows
that the variances in &, and s, are '

a8 = () [1 = (p — g cos® (pBut)],
{4.3.13)
a(s) = h*f4.

The component s, s always highly unpredictable, since its variance is always
A% 14 the variance of s, oscillates between (0 /4) [I — (p — ¢ ] and A*/4, 50
that the predictability of s, is oscillatory. In the pure state case p = | or
p = 0, in which the outcome of the initial s, measurement is precisely known,
the variance a?(s,) osoillates between O and 2% 4, At the other extreme, if
p=q=1/2then a'(s,) = &[4 for all £

Contrast the oscillatory behavior in (123 and (13) will, the reluxation to
equilibrium found in our simple classical statistieal example (see for imstunce
Figure (3.4-5)). This conlrasl between quantum statistics and clissical sta-
tistics is not simply a peculiarity of the two examples chosen, but is chuaraoter-
istic of the two theories, and appears to be one of the fondamental differences
between guantum and classigal statistics. This difference may be traced back
to the continuous nature of the possible outcames in a classical measurement
versus the diseréte nature of the possible outcomes i Quantum measure-
ment. We will discuss thisquestion further in Chapter 5.
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44 THE INITIAL DISTRIBUTION

Suppose that we obtain data D as the result of a measurement of an ob-
servible A (or several commuting observables). 1f ) determines a specific
quiintim state, (hen theee is no need for quantum statistics. But il [ does
not determine @ specific state then, according to Seetion 4.1, the initial in-
formatian is described by a stutement of the form “the system is in state [4,5
with probability p,” where the |4 are the eigenvectors of A and where the p;
have yel 10 be determined. As in classical stutistics, we determineg the p
through Joynes' principle.
For quantum systems, two situations are common:

Case 1, Nathing is known about the state |} just prior to the measure-
ment of 4, and the measurement yields data £3

The opposite of this case i5:

Cage 2. The precise state |17 18 known just prior to the measurement of 4,
and there 15 no duta about the eutcome of the measurement,

Case 1 is the situation studied in classical statistics, in which we have no
duta prior 1o the initial measurement, and the measurement yields partinl
information, In Case 2, we have complete data prior to the measurement,
but no information about the outcame of the measurement. Case 2 is not
interesting in clussicul statistics, becanse if the classical state just prior to the
measurement is known to be the phase point xq, and if (as may be assumed
in classical mechanics) the measurement does not disturb the state of the
system, then the precise state just afler the measurement is known to be x;
even though the puteome of the measurement is not observed.

We will now discuss Case 1, and will return to Case 2 shortly. Recall (see
Section 4.1} that an ontcome means a state |5 & 7, where 5 is the set of
all vectors representing physically possible states of the system. In Case |
oiir knowledge abaut the outcame is described by the probubility assigrment
{142, p}. where the p, have yel to be determined. Thus the uncertainty about
the autcome | ¥ 3 is the uncertainty in the probability distribution (py , pa. ...
Acecording 1o (2.3.28), the expression for this uncertainty depends on the
distribution P and P° representing the maximum information and the prior
informmuation (prior to the measurement). We will now determine the distribu-
tions P™and P2,

There is no prior information in Case 1, so P must represent complete
ignorance, It is fuirly clear that “complele ignorence” is symmetric with
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respect to the possible outcomes | A5, 5o that forana-dimensional vectir B
the prior probabilities are pi' = [/u. A more lorinul wrgiment is: Let “com-
plete ignorance™ be represented by the dénsity operatar &y, As in Chapier 3
(see (3.0,2)), fo must commute with every possible Hamiltonian on 1he vee-

tar space of the system, 11 follows that gy = u '], Expanding in terms of

the A,,

o = T A n™" LA,
from which pi = 1/n.

The distribution £ should correspond to knowledge of the precise quan-
tum state. However, if the system consists of W identical particles, then (us
discussed for classical systems in Section 3,6) a question arises as 1o whether
maximem information can determing o precise vectar 9%, sinee the veotor
space contuins N1 dillerent vectors differing only by particle exchange whereas
even maximum information cannat distingnish between different particles
{and hence cannot distinguish between these N vectors). Recalling that the
probability space & contains only those vectors representing physically
possible stutes, this gquestion s taken care of by the quantum mechanical
exchange-symmetry rule, This rule (which is presumed to be familiar to the
reader) says that for a system of identical particles, the physically possible
states are symmetric (for Bose particles) or anti-symmetric (for Fermi par-
ticles) under particle exchange. It follows thar, if %5 and ¥ are wwo
physically possible vectors (i.e. two vectors contmned in %) differing only
by particle permutation, then W5 and "™ are in facl the same vector
(except possibly for a difference in sign): %5 = + |95 Thus, maximum
information does indeed determine a single quantum state |5 e .

Thus, in Case 1, P and P" are precisely as specified in (2.3.30), and
Jaynes” principle tukes the following form:

Jaynes' Principle for quantum statistical mechanics, 11
nothing is known aboul the state |13 prior to the initial
measurement, and i data D is obtained by measuring
some ohservable (or set of commuting observables) A,
then the initial probability assignment is {| 4,3, p,}, where
the |4,) ure the cipenvectors of 4 and where the p; max-
imize the uncertainty

Ulr=0)= =Z pInp,
subject Lo £, (4.:4.1)
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The expression in (1) for the uncertainty may be written in terms of & as
Pgl = =Trdglng.® (44.2)

Proof: Evithimting the trace in the 4 representation,

~Trding =~ <A G 1A CA|Ing 4.
i

But <A G145 = b, and (see footnote below) A1 0§14 = 8y,
50
~Trdng=—~Xpnp,

which is precisely the expression given in (1) for the uncertainty.
Two imporiant consequences of Jaynes' principle are:

Lét the energy H be measured, and let the data be £, = H
= £ where £, and E; are given. Then

Gt =0) =S |H)n~" CHY,

where the sum is over all |/ such thar £, < H) < £,
and where r i5 the number of such eigenvectors |H . (4.4.3)

Let the energy H be measured, and Jet the data be {3 5= E
where £ 15 given. Then

Gt =0y =2Z"exp(—fill)

where Z = Tr exp (=) = Z(f) and § is chosen to
satisly the data. (4.4.4)

These results follow by maximizing —Zp; ln p; subject 1o the data, where
o= P(H ). In (30 the maximizing probabilities are p, = n g, = H,
< Ey) I (4) p, = exp (—=f#H,). The density operators (3) and (4) ure called
the microcanonical density operator and the canonical density operator. They
are the quintum analogues of (3.6.5) and (3.6.6).

According to Section 4.1, if data is obtained by simultaneaus measurement
of (A, B, ...} then the corresponding density operator is disgonal in any

* A word about funetians of operators{for instance, In g ): An operator A is “functionally
dependent” oo B A is disgonalized i every represeniation dizgonalizing & In this case,
the stutement 4 = fif), where fixi is some ondinary e, aamerical) Fumistiom, meins
that the eigenvidues of A snd B are relived by Ay = f00) Tnease fla) s expandable in o
pAWEr B X (8 = g 17 this definition il that FERY = 5 g, 08 = )
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representation which simuliancously diagonalizes (A, 8, .0, Accarding 1o
the footnote on page 107, this implics thal § is funetonally dependent an

Ay By

If the data is obtained by simultansous measurement of
(4, B, ...), then @ hng the form § = A, B, ...). (4.4.5)

This result is the quantum analogue of (3.6.8), Note that (4, B,...) com-
mute, since (A4, B, ...) are simultaneously mensurable.

We will now discuss Case 2, in which we know |4 just prier 1o the mea-
surement of same observable 4 but do not know the outoome of the mea-
surement. Expand %3 in terms of the |4,

|y = X |d .

Cuantum theory says that, defore the measurement, our knowledge about
what state the system will be in gfter the measurement is described by the
statement | 4,> has probability pi' = [a,*". The measurement itsell yiclds
no pew data, since we do not koow the outcome of the measurément. Thus
the prababilities p, deseribing our knowledge immediately altee the measure-
ment must maximize the uncertainty O (P P PY) (see (1.3.28)) where £ 15
specified by pi = ja;|* and where the only condition on 15 Xp, = 1. By
(2.3.28), maximization of {715 equivalent o minimization of

TP PY) = = ™ In l#ifﬂﬁa

By (2.3.15), 1{P; £°) is mintmized (for lixed P°) when p, = pi. Thus, in
Case 2 the density operator i3

G =0) = 243 |ay)* <A {4.4.6)

where @, = P A0 and W7 means Hhe stale just before measurement, The
density operator {6y is appropriate only if we do nol know the outeome of the
measurement of A. I, on the other hand, we know that the outeome is A,,
then @ (r = 0) is the pure stare |43 {A4,].

For example, let our simple spin 172 system be in the state (4.2.1) just prior
1o a measurement of 5., and assume that the resull of the 5. measurement 15
not known. {In Section 2 we deseribed a fairly realistic situation in whiclh
the outcome might he unknown.) The system is then described by the din-
sity operator (4.2.10) just alter the measurement.

In Case 2, information is actually lost when the measurement is made.
This is rather unusual, since one ordinarily hopes to gadn information by
measurement. The trouble s that the measurement disturbs the system, bid
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since (in Case 2) we do not observe the outcome, we hive no information
ghout the elleet of (his disturbance on the system., Ouantitatively, the uncer-
tainty before the measuremeént is

~Trdlng = =Tr (' ) In |75 (W) = 0.
Lising (6), the uncertainty immediately after measurement is
~Trdlnd = —Za)* Injal* =0,

with equality only if |a|* = 1 for some a;, i.e. only il the prior state |''} is
one of the |40 .

It miay be worth noting that the information loss which occurs 1.n L'¢11s¢ 2
does not have anything to do with the second law of thermadynimics, since
cguilibeivm thermodynamics does not apply o Case 2.

45 EQUILIBRIUM

Practically everything about equilibrium in Sections 3.8 and 3.9 Ej;:nliun wit!1
anly minor modifications 1o quantum statistics; so our discussion of equi-
librium quantum statistics will be brief.

A quantum mechanical constant of the motion is nn observable whose
operator A commutes with the Humiltonian:

1A, 4] = 0. (4.5.1)

It follows 1hit ¢AY is constant, and the eigenvectors |4, are fmlimlur.y
states (Le. exp (iwf) |4,) satisfies Schroedinger's equation provided o 15
chosen appropridiely). ]

A quantum system is in statistical equilibeinm if ¢ depends anly on the con-
stants of the motion:

i=rf148..] (4.5.2)

where A, B, ... are constants of the motion. By (4.4.5), the system !'Eli"
equilibrium whenever the data refers only 1o constants of the motion. The
operator (2) commutes with A, so0 (4.3.5) implies dgjdt = 0. 'I"Iu.m. the sys-
tem remaing in equilibrium until either new data is obtnined or {7 is changed.
Predictions are time-independent at equilibriun.

The microcanonical and canonical density operators fape and é"“'t [sew
{4.4.3) and (4.4.4)) are functions of Hand henee are equilibrium di;.tributmps;
Bt Is applicable 1o elosed systems, while fo,, i applicable to syst:m.s which
exchinnge energy with the environment. If the number of particles N is lurge,



110 Concepls in Statisticsl Mechanics

then for most purpogses & and &, vield macrascapioally ndistinguishable
predictions, and hence we mpy wse d, whether the systen is open or closed.
If we abtain data by measurement of observahbles G, G2, whose opera-
tors are (ai least approximutely) a sum of single-particle operators: and it N
is large, then the data is deseribed reasonably well by the generalized canon-

ical opermor
glt=0)=Z Vexp[-Z x, GV]. (4.5.3)

See Section 3B Tor the proof of the unrrﬁnpnnd'mg stalement in classical
statistics,

For aur simple spin 1/2 particle in an external magnetic field, # isthe only

functionally independent constant of the motion, 1.e. any other constant of

the motion is a function of 7. Thus § represents equilibrium if aod only if
g = J(IT), i.e. if and only if § has the form

d=+2p {4 1=2adl=| (#:3.4)

{see the footnote on 107 regarding Tunclions ol operiors).
Equilibriwm thermodynamics is based on the canonical density aperator

Bun = Z7V (1 Vo I exp [= 8 (¥, LN, (4.5.5)
ZAG VN = Trexp [0 (V, (N (4.5.6)

the symbaols [, 17, [N have been defined on p, 86, A system described by 5.,
isesaid o Be i theemal egquilibrivm.

We will now state and prove the second lnw of thermodynamics for thermal
equilibrivm states: Consider a small (butl otherwise arbitrary ) change in the
constraints on msystem, resulting in an evolubion from the imdal equilibrium
state (£, 8, [N ) v the ool couilibriom state (8 4 8d, 14 SV I oV
The second law asserts that there exist thermodynamic variables (ie. fune-
tiong of £, ¥, and [NV TUE V, [N} and S(E, ¥, {N,}) sich that, to
fivst arder in small quantitics, the change in S due o the chinge in stile
salisfies

45 = AT {4.5.7)
Here,

SO = BE — AW (4.5.5)

is called the heating done on the system during the process, und 40715 the
macroscopically obseryuble wirk done on the system during the change in
consiriints,
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Proof of the second taw: We will show that the thermodynamic variables
defined by
SUE VAND = =k Tr(foan 10 o) (4.5.9)

(4.5.10)

THE, V. (N =
D = e
satisly (7). For simplicity, we will assume that only one particle species is
present, so that the observables are (L, V. Nz the prood mny be easily ex-
tepded to rspecics.
By (5) and (¥), 4
exp (—fild)
56,1, = 471 g [22CODT]

= KIE + Kl Z(f, ¥, N). @511

Taking the differential of (113, the chunge in 8 due to the chinge in state s
to first order i small quuntities, _
dinZ(8, V. N) 4

88 = K 8E + KEM + k f
Iﬂ' V ap
R NZB VN L M ZB VN Y g502)
av aN

Fram {6,

AnZEHVNY _LjiiTrlﬂpf—ﬁmh -—%Tr[r‘?mm—ﬁﬂlh ~E.

ap 2 af
{4,513
Thus the seeaiid and v werms on e cighi=hiond side of (12) eaneel, and (12)
becomes
dn Z(8, VN
38 = kROE 4k TN 1o T InZ (@, ¥. N)

(4514
a¥

LS ‘;

oV + dInZ(f V. NY g0
IN

Equation (F4) gives the change in & for any small ehange (BE, &1, aN),

Let thie change in constraints he initiated at time £, and terminated ut 1,
(note that the time ¢, to 1y muy be long, even though the change in con-
straints is assumed to be small)., The macroscopic work done on the sysiem
during the change in constraints may be written.

AW = J Wi dr,
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where W(1) is the rate of doing macroscopic work at time ¢ (note thas W(r)
150 small guantity). Since, for many-body systems, macroscopie quantitics
are equal (with high probability) to the expectation values of corresponding
migroscopic quantitics,

e
Mr:j CWed, it (4.5.15)
i

]
where

{H'.mh}| = T' [ﬂ(“} }-l.rhlh.'l ‘4.5.1h]’

is the expected rate of doing work at time 1.

Mow et us assurme, Tor & moment, that the process is quasi-static, .. that
the chinge in constrniits is careied out dnfiniely stowly. The weroth low of
thermodynamics (1.e. the fact that systems relax to thermal equilibrium) then
implies that the system remains in equilibrium throughout the change. Thus,
at auy time ¢ during the process, the system is represented by the canonical
density operator (5), where £, 17 and N depend on & But @, ¥, and A change
by only o small amount during the entire process, chm o Jovwest order in
small quantities, {Wm.u}. in(13) may be reploced by {Wm,;},,, where { ),
represents an expectation value taken over the initlal cunonical density
operator. Equation (15) may then be writlen

LT f1 =
'd_w“-[ <j'ﬂnh:}1|dl' = < wll'llll dr> = {ﬂwmiu}n [45|?}

Fy

where W, is the aperator represenfing the total microscopic work done
on the system during the change in constraimnts. But

W = FI() — Hi{t,) = -‘iﬂ 8V + an 8N, (4.5.18)

aN
where the second step follows from the fact that /7 depends parametrically

oily on Fand &, Equations (07 and (18 imply thid the macroscopic work
done in a quasi-static process is

ARE ¥ ¥
S = Tr[ac..nl}(iar ‘a—”aw)] <ﬂ'f> SV & ﬂ> SN
an v/, o/,

(4.5.19)
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A derfvation annlogous to (13) shows that

dnZ(p, V,N) - <c'i.r‘f>

ar aF
(4.5.20)
dInZ(i, vV, N) _ _p <a.‘? >
AN aN

Combining (14), (19) and (20), the change in S due 1o a quasi-static change
in constrdnts is

A8 = kB AE — Kfi 81 = S0(T, (4.5.21)

where the second step follaws from (8) and (10). Thus, the equality in (7)
holds for quasi-static processes,

Mow consider # non-quasi-static process connecting the states (£, V, N)
and (E 4 8F F 4 8V, N + dN). In this case, the change in 8 is still given
by (143, but the work done 15 no longer given by (19). The work done on 1he
system i i non-guasi-statie process connecting two given states must be
greater than the work done in a quasi-static process, since in the non-quasi-
static case the applicd macroscopic forees must not only alter the constraits,
but must also accelerate the system. 1t follows that the heating 60 = 8E — 4W
i less in the non-guasi-static case than in the quasi-static case. Thus, the in-
equality in (7) holds for any non-gquasi-static process. This completes the
stutistical mechanioal proof of the second law.

Tlis we have proven the second lnw by actually exhibiting thermodynamic
variables () and (10) huving the desired property (7). The interpretation of
the second law and of the entropy have been given in Section 3.9,

Gibbs' paradox (i.e. the jump from (3.9.9) to (3.9.10) in the entropy of
mixing) is sometimes congidered 1o be less paradoxical in quantum statistics
than in classicul stutistics, The classical explunation (see Section 3.9) for the
apparent paradox is that our fiformation changes radically when we alter
the system from nearly indistinguishable species to completely indistinguish-
able species, and henee wie expect the entrapy of mixing to change radically.
In quantum statistics, the jump in the entropy of mixing still occurs, but now
the explunation seems different : the jump oceurs because the set of physically
possible states (satisfying the exchange-symmetry rule) is altered drastioally
when we alter the system from nearly indistinguishable species to completcly
indistinguishable species. Thus, the clussical explanation appears to be non-
miechanical, whereas the quiantum explanation appears to be given in terms
of a purely mechanical principle (the exchange-symmetry rule).
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In the author's opinion, the above-deseribed distinetion between the cliss-
cal and quantum explanations of Gibbs™ parados is merely verbul, In e,
entively within classical mechanics, we coulid invent an “exchange-symmelry
rule’ according to which the only physically udmissible clussical states, for a
system of N indistinguishable particles, wre symmetric under particls ex-
change. A single classical state would then no longer be represented by a
single point ¥, in phase space, but would instead be represented by N!
patints dilfering only by particle permutations. A single paint (or outcome)
in the probability space &, of physhcally possible sties would then corre-
spond to A points in phase spice, and all integrals would be tiken over 7 i
Indeed, this approach is sometimes used in classical statisties (alithough not
ardinarily in classical mechanios) ) &, is called the *generic phase space’ and
apoiptin &7 i cilled thi “generio phase™, 10 s appronch i vsed, the clig-
sical expression for the entropy wall no longer contain the factor N1 and one
can argue that Gibls' parados hasa purely mechanical explanation in terms
of the new classical exchange-symmetry rule. The only reason that such a
syrmmetry rulie is not used i classical mechanics s that it s not convenient
Lis think of a classical state a5 i symimetrized combination of points in phase
space.

Thus, the classical and guantum explanations of Gibbs' puradox are
fundamentally the same, amd the classical explamtion is fully as patoral as
the quantum explanation.

Althaugh Gibbs" paradox is flly explaimable in termes of classical statistical
mechanics, there are important aspects of the guantom exchange-symmetry
rule which have no chissical analogue. From symmetry considerations, it
follows {in both the ::Iussir.iﬂ and quantum cases) thut all prediciions about
systems of indistinguishable particles must be symmetric under particle ex-
change. In classical mechanics, 10 follows that the state Usell must bie synime-
tric. But in quantum mechanics, predictions (e.g, CA> = P LA 975) are un-
changed when |3 15 multiplied by exp (i), so it follows only that |7 must
be symmetrie to within a phase factor, More precisely, 1515 and [ difTer
anly by particle exclonge, then it Fallows by symmetry that (YW = exp (i)
|, where ¢ s a real angle. The basie physical assertion of the quuntum
exchanpe-symmerry rule 1s theén thot ¢ = 0 for systems of Bose particles
(with spin 0, 1, 2, .0 and i = e Tor systems of Fermi particles (with spin
(12, 3/2, ..} Iappears that we cannot deduce this assertion from symmetry
arguments of the kind used th explain Gibbs" paradox. The assertion that
gh = 0 or ze allects quantum statistical predichions ina very busic way, since
it determinegs which states are counted s physically possible and hence
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determines the structure of the probahility space &, The resulting statistical
predictions are called *Bose stalistics”™ for Bose systems and “Fermi statis-
tes" for Fermi systems, No analogous pair of statistics exists In classical
statistical mechanics, and thus the exchange-symmetry rule is respandible for
one of the busic differences between classical and quantum statistics.
The third law of thermodymamics states that the equilibrivm theemodyna-
mic entropy approaches zero as T'— 0:
lim ST = 0, {4.5.22)

(]

We can derive the third law from quantom statistics: By (5), (%) and (10},

S(Ty = —k SP(H In P(HY), (4.5.23)
where

PO = Z7(T)exp (—H KT, (4.5.240

T the limidt =« 0, (24) becomes
nt LH = Haw)
lim P{H)) = oo (4.5.25)
T iy (H, = Haal

where H,,, is thie sinallest ¢nergy eigenvalue, and where i is the degeneracy
of 4, * Assumiog that the sum (23) is uniformly convergent on some inter-
vl containing T = 0 (50 that the limit may be interchanged with the sum),
(25) implies
i S(T) = =k Shm [POH) W PHB) =K Inn. (4.5.26)
T=f Tl

I M, 18 non-degenerate, then n = 1 and (26) is the third law. 1T is not too
large, then (26) implies the “approximate™ form of the third law: S=S;=0
s T— 0. .

The third law has a natural interpretation in terms of our interpretation
(see Section 3.9) of the entropy. At 7= 0, the system is in the state [Hg,.»
with probability 1, so (assuming that #,, 16 non-depenerate) the observer
knows the precise quantum state of the system and the uncertainty 8 is zero.
That is, the third law says that if a thermodynamic observer (who can mea-
sure only £, ¥V, and {N,}) finds that TCE, ¥, {Ni}) = 0, then he knows the
precise quintum state of the system,

1t can he shown that the classical expression for the entropy goes iy — <
as T=s 0 This 'I.w. can derive the third law from quantum statistics bul not

* We must assume that M, exists, L2 that the energy spectrum has a lower bound,
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from classical statistios. This is an example of the general rule that quantum
effects are important in thermal equilibrium at low temperatures. The reason
is that as T becomes small, statistical mechanical uncertainties (i.e. the
observer's uncertainty about which mechanical state the system is in) become
small; in fact, this is precisely whot is asseried by the third low! Thus quan-
tum uncertaintios (1.&. the uncertainties which remain even when the precise
quantum state |5 is known) begin to predominate over statistical mechani-
cal uncertaintics as T -+ 0, Since classical statistics describes only the sli-
tistical mechanical uncertainties and neglears the quantum uncertainties, we
expect that classical stitistics will be wrong al Tow temperatures,
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CHAPTER &

[rreversibility

5.1 THE REVERSIBILITY OF MECHANICS

Omie O e siosT obvious features of the physical world bs the icreversibility
of moast processes: winterfalls nhways flow downhill; two thermally connected
systems evalve toward o common temperature; boxes slide down inclined
planes while heating the plane and the box; o cue ball livs a trangular ar-
rangement of 15 pool Balls and seatters them. T eich case, the time-reversed
process is mechinically possible but is not observed in rature: the water
maleeules could intially be moving upward with sufficient velocity to carry
them from the bottom to the top of the waterfall; the molecules of the cold
system could spontancously lose energy 1o the molecules of the hot system;
the box could slide up the inclined plane while cooling the box and the plane;
the pool lulls could find themselves maving in such o wiy that 15 of them
come topether i o triangolar arrangement with thi total energy being trins
ferred to the cue ball. One of the tusks of stutistical mechinics is to explain
why these reversed processes, which are mechanically pessible, are not in
Tt observed o the real world. This is called the irreversibility problem,

Since the reversed processes are mechanically poxsibfe, the most we can
hivpie tor oy (shont of rejecting mechanics!) is (o prove that they are somechow
ingriadarbte. T fallaws Uit probabilisiie considerations are an easential parl
af any explanation of irreversibility, and that any pttempt at a purely me-
chanical (Le. non-probabilistic) explonation is bound to fuil, That is, we can
caplain irreversibility only in terms of statistical mechanics:

The irreversibility concepl has given rise to lots of controversies during
the past century, Many of these conlroversies boil down to simple disagree-
ments over the meanings of words. In order to avoid this situation, let us
give a few formal definitions. We will say that a theory (such as mechanics,
ar statistich] mechanicos) s reversible i i1 is both time-symmetric and non-
Felasing; we will say that  theory i dereversible if it is bath non-time-sym-
aretrio wind relaking. We mist now deline time-symmetry and elasation, &
thieory is time-symmetrie 10, Tor any permitied time-sequence of stales
vore Ay B0, L the time-reversed sequence ..., €, B, A, ... i5 also permitted.

¥ Hulsan (524

17
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A theory exhibits relaxation if any permitied time-sequence of states posses-
geg ad limil as ¢ — o, Le i1 slntes “sellle down™ os 8 — oo, Note Thit gon-
timi-symmetry and relaxation are independent concepts, and that we will
call & theory “irreversible’ only if it is both noa-time-symmetric and relax-
ing: Another useful concept 15 almost-peciodicity: A theory 15 almost perindic
if the time-dependent state of e system keeps retuening achilsunly near (o
the il state (we will sharpen this concept below), Note that nlmost-
periodicity implies non-relaxation.

We will find, in this Section, that elassical and quantum mechanics are
time-symmetric and olmost peciodic, und henee reversible, Tn Section 3.2,
we will find that clossical statistical mechanies 18 non-time-symmetric and
relaxing, and hence ireeversible. Tn Section 5.3, we find the rather surprising
resull thit quantum statistical mechanics is poo-time-symmkirie hut dlmost
periodie, Hente quantum statistics is nelther entirely irreversible nor entively
reversible; it is a little bit of cach.

The following theorems show the time-symmetry of mechanica:

Time-symmetry of Classical Mechanies, Let the phase path
corresponding to the imtial condition Gy, po) be g, ple)
The phase path corresponding Lo the dnitil condilign
(gas —Po) is then (g( =), —pl—1)). (5.1.1)

Time-symmetey of Quantim Mechanics, Let the solution of
Sehrovdingers equation corresponding to e initial con-
dition W (g) be W (g, t). Then the solution corresponding
to the initial condition 45 (g) 18 W'* (g, —1). (5.1.2)

Here, ¢ = (g, «oon qyd o= (g oo pyd and (For simplicity) we assume the
quantum system to consist of N spinless particles and we use the wave fune-
tion formulation of quantum mechanics, The classical thearem follows fraim
thie fuct Pt iF gied s gied satisly Dlmiltons equistions, then s dogl—¢)
and —p(—=1). The quantwm versicn Tollows From the Tl thal if ¥ (g, 1)
satishies Schroedinger’s equation, then so does ' (g, =) Either version
says that iF o certain sequenie of events Ts possible, then the dme-reversed
sequence is also possible (where the momenta are of course reversed in the
time-reversed sequence), Thus mechamics is tme-symmetric: it iy meclunic-
ally possible for waterfalls to flow uphill, ete, Note that time-symmetry holds
evencin the limit N - oo,
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The fallowing recurrence theorems show that mechanics is nonaelnxing.

Almost-Periodicity® of Classical Mechanies. Let the initial
phase-point x; be such that the phase path X{r) is con-
lined toa finite region of phase space (Le, confined within
wosphere of finite radins in the 6N-dimensional phase
space). Then, Tor any & > 0, there exist infiritely many
times © (spread over the whole range — oo to oo) such that
IX(r) = x| <& (e Xr) s inside o 6N-dimensional
splicre of radius & with center gt v, {5.1.3)

Alnost-Periodicity of Quuntuin Mechanics, Let the initinl
shbte [P0V be expreasible as o lincar superposition of &
discrete set of energy eigenatates. Then, for any ¢ > 0,
there exist infinitely many times v (spread over the whole
range — o to co)such that [ [}y — |H(0)5 | < & Here,
the norm || ] is defined by |[W5 (3 = (F| 0, (5.1.4)

We will not prove these theorems here. Poincaré first proved the classical
theorem; Ref. 2 gives a good discussion. The quantum theorem was first
proved by Cno® and independemly by Bocchieri and Loinger.® These theo-
rems imply that mechanical observables (classical phose functions or quan-
tum expectation values) keep returning (1o any desired degree of approxima-
tion) to their oviginal values, ind hence that relaxation to a final, asymptotio
stale cannat veeur,

Almost-periodicity breaks down in the limit N -+ o0, since the recurrence
time T may become infinite in this imit. (In terms of the classical recurrence
theorem, X{r) is no longer confined to a finite region of phase space as
N =+ cotin terms of the quantum recurtence theorem, the set of encrpy gigen-
states becamed o continuim ag N — ). 1t may then seem that irreversibility
can be explained within o purely mechanical framework, simply by allowing
N 1o beeone Tirge. There sre at least three things wrong with this opinion:
(1) Lrreversibility is pctoally observed even when N is finite (for example,
N = 16 in the Toregoing poal ball example), (2) Letting N — o doesn't
chanjte the Tact that mechanical systems are time-symmetrio, (3) Letting
N = o miy remove almost-peviodicity, but it does not lead to relaxation;

* HoBohr! introdueed the tefm aloost periodle 0 conneétion with nearly récurrent fung-
o J e The e of this term in (5, 1.3) ond (5.0.4) s essentially the same as Bolr's usage.
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neither finite nor infinite mechanical systems settle down to static mechanival
states as b — o, Thus, the mechiamen! evolution of both finite and infinite
systems is time-symmetric and non-relaxing, and heneecompletely reversihle,

52 |RREVERSIBILITY AND CLASSICAL STATISTICAL MECHANICS

There are {wo important features of sitistical mechanics which are not found
in mechanics: statistical mechanics deals with o phase space probability dis-
tribution while mechanics deals with a single phase paint; the statistical
initial condition must obey Jaynes' principle, while there are no renernl res
strictions on the mechanical mitinl condition: [f will be shown in this Section
that these two non-mechanical ideas, together with the fact that experimental
duti never refiers to the Tature, are sufficient to explain irreversibility in tern
of classical statistics,

First, consider the implications of the fact that statistical mechanies deals
with a probability distribution satisfying Liowville's equation. Defining
g = seeey Gy = (Bio-es ol ol oo ¢ sutislics Liouville's equition
then so does p (g, —p. — 00 Thus we have:

Time-symmetry of Liouville’s Equation. Let the initial dis-
tribution g (g, p, 0) evalve, during O fooe, o o (g, p,f.
Then the initinl distribution g (g, —p, 0) evolves, during 0
to o, into g (g —m —1h (5.2.1)

Thus Liouville's equution is time-symmetrics i o certain seqience ol pie-
dictions (c.p. a certain sequence of expectation values) s consistent with
Licuville's equation, then so is the lime-reversed sequence (where the mo-
menta are reversed in the time-reversed sequence), For instunce, in the case of
{wa systems in thermal contact, for every solution predicting that (wilh high
probability) the hot system loses energy 10 the cold system, there is another
solution predicting that (with high probability) the cold system loses energy
to the hot system. However, this does not necessarily mean that statistical
mechanics is time-symmetrie, since statistical mechanicsis based not only on
Liouville's equation but alse on Jaynes’ principle. Tn fact, it will turen ol thit
those iiitial conditions which are consistent with Jaynes’ principle lead to the
ustitl irreversible predictions, while the timesreversed predictions arisg Tom
initinl conditions which are not consistent with Jaynes' principle for any
experimentally obtainable dati.

We now ask: does Liouville’s equation imply slmest-periodic predictions?
It is eusy to seée that the answer is “no'". For instance, in the particle in a box
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example we found in Section 3.3 that P (g < Lid); 1) = 05and P ({p > 0};
() —+ 0.5 us £ —+ ao; in Section 3.4 we found that g, - L2 and {pp;—=0
as £~ o Even though the mechanical motion of this one-particle system is
exnctly periodic, probabilities and expectation values seitle down 1o con-
stanis a8 1~ . Thus, there do exist finite systems for which the statistical
mechanical predictions are not almost-periodie, and hence the almost-
periodicity of clagsical mechanics does nol carry over into classical statistical
mechanics.

Let us be more precise, We will say that a function [(x, £) converges
strongly 1o /(1) if, for almost all x (e all x exeept possibly for a set of
Lebhesgue measure® zero),

lim f{x. 1) = fola) (5.2.2)
=
We will say that £ (x, 1) converges weakly to fo(x] if, for every Lebesgue inte-
griable® gix),

lim §&(6) Ly, D) dx = [ gla) folx) v, (5.2.3)
where the integral s over the entire range of x. 1t miy he shown® that strong
gonvergence implies weak convergence; the eonverse s not true, IL may be
shown® that condition (3) for weak convergence is equivalent to the condi-
tion that, for every Lebesgue measurable region R of positive measure,

lim [ Piw, ) dy = j ,ﬁ.{.':}_d.r. (5.2.4)
Peavan | py o

We will say that a differential equation for functions f1x, £} exhibits relaxation
if every Lebesgue integrable initial condition /'{x, 0) leads 1o dosolution /%, 1)
which 1s weakly convergent,

For the particle in a box, solutions of Liouville's equation are nol sirongly
convergent, In fact, with the initial condition (32,10, lim o (g, p; 1) does not

freil
exist s at the fixed point (4. p), ¢ just continues to alternate between 2MhE and 0
with period 2Lmp. However, solutions are weakly convergent: the “streteh-
ing™ or “phase-mixing" of g (v, 1) shown in Figure 3.3-2 clearly implies that,
forany region & of positive measure (Le. having positive area in Figure 3.3-2),

Iimj o(x, 1) i = J Daghn) el (5.2.5)
[ K

I—=df

* Reparding Lobiesgae measire and  Eelesgio fnrerdie, see the footnotes on pages 18
ant 54,
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where (assuming the initial condition (3.2.1)

L2BL (lp] < B)
peslx) = (5.2.6)
0 {p| = .
Thus ¢ converges weakly 1o o, Tl then follows from (3) that expectation
values of all Lebesgue integrable® phase functions g(x) converpe:
lim (glx)y, = [ 8(x) 0,,0x) dx. {5.2.7)

1=z
Mote that (6) is an gquilibrivm distribution, since it depends only on thi ¢an-
stant of the motion |pl,
[t seéms clear that, for the particle in a box, the phase-mixing plienomenon
{see Figure 3,3-2) will ocour whenever g (x; 0) is not concentrated on o set of

isolated points or curves. [This gqualification is impartant. For example,
discrete initial distributicns

g a0y = Eppdlx — ) (5.2.8)

will st lead Lo phase-mixing {sec Appendix C). Neither will initia] digtribu-
tions

el p 0) = gy d(p — py)

concentrated on the line p = py. On the other hand, inital disiributions
‘which are spread over a continuum of pvalues should phase-mix, since points
having different momenta move with differént periods and hence 1he distri-
bution must “streteh™.) Thus, for the particle in a box, Lioeille's equeation
exhibits relaxation, Le. all Lebesgue integrable solutions converge weakly
to equilibriom distributions, and hence all statistical predictions relax 1o
equilibrivm.

For the particle in a box, relaxation results from the Tagt that the period of
mechanigal motion is o continuous and non-constant function of the energy
of the initial phase point. Since initial points having different energios move
with different periods, the distribution stretches. The same behavior occurs
for any bound®* one-dimensional sysiem whose period ¥ is energy-dependent,

* It s worth noting that the Derae deli fonction & eef o Lebesgue intégrable Tunetion,
and henee {8 (= g d e — pedd, TG — gl wies don't necessurily converge,

** A bound system menns a systent for which ench phase puth can bo enficely enclosed
wilthin s finite sphede o the 2dimensional phiase spooe, The radius of the spliere may bi
different for' different paths, Le, v doopnot reguire bouid systéms o hve finlle phise
Spaces.

o any Bonnd one-dimensioni) consorvative spstem s neeessanly periodic,

i .
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Naw, it appears that the only bound one-dimensional system whose period
is not energy dependent is the perfect harmonic oseillator.* Thus, Liouville's
equation exhibits relaxation for all bound one-dimensional systems {ie.
systems having one degree of freedom) except for the perfect harmonic os-
cilluror,

Continuing 1o generalize, Liouville’s equation exhibits relaxation for any
system of non-interacting particles, provided only that the particles are not
hurmanic oscillators, since each particle undergoes phase-mixing in its own
one-particle phase space. Finally, any internoting many-hody system which is
equivalent, under an appropriate canonical transformation, 1o a non-inleract-
ing system (i.e. whose rransformed Hamiltonian is “separable’) ﬂxhihills
reliuxatio, provided only that the equivalent sysiem is not a set of harmonic
oscillators,

Now, physically realistic many-body systems don't ordinarily hive separ-
able Humilionians, nor can they be canonically transformed to a system hav-
i 4 separable Familtonian, Thus, we must ask whether Lionville’s sguntion
exhibits relaxution for these more general systems. The answer appears to be
yer”, although a rigarous, general proof has never bheen given. The U~
ment for the relaxation of Liouville's equation runs as follows: Relaxation 1s
due 1o the phase-mixing of the distribution function. Phase-mixing occurs
whenever points initially close together in phase space do nol remain close
together as the points move along their respective phase paths. In mathemat-
ical terms: Liouville's equation exhibits relaxation if and only il the solutions
to Himilton's equations (more precisely, all solutions except possibly a set of
Lehesgue-measure zero) are non-stable.** Unfortunately, not much is known
about the stability of mechanical systems. We have seen above that the only
one-dimensional system whose splutions are stable is the perfect harmonic
ascillator, The only non-triviel (i.e. non-separable) mechanical system about
which much is known is the restricted three-body problem (three gravita-
tionully interneting particles, where the mass of the third particle is so small
that its motion does not affect the other two particles), Even in this problem,

* The author is met dwaee of any rigorous proof of this datement, However, all nén-hir-
monthe potentinls (snch as the slightly anharmtonic oscillator, and the suare well) used in
phiyaivally realistic problems seem (o have energy dependent periods,

so A nalution X 0| xg ) bs seable if, for any e = O, there exiss & > 0 goeh thit eviryinitial
point x| sarisiying bey — xo| < 4 fendd 1o a solution X (¢|xy) satisfylng | X (e, )~ Xir|xal|
crforallii=m < ¢ = ok In other words, N (| xg)is o stahle solytion i X (¢ 2 ) may
e hepl arbitearily @lose 1o X 1| agd Tor all tme, simply by choosing &y sulficienly close
1 5.
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which is protuably the simplest of all non-irivial many-body probloms, not a
single solution is known to be stable™ Tt is strongly suspected that non-
separable many-body systems are non-stible excepl in very exceptianal
cases’.

Thus we have (subject 1o the qualifications of the preceding paragraph;

Relaxation of Classical Statistical Mechanies. 11 the in-
itial probability distribution is Lebesgue integrable, then
probabilities and expeéctation values sertle down 1o equi-
librivm s ¢ — o

PixeR;t)- J Oegla) e,
i

by, = [ 80x) peal 5) d.

Were, B s any phisse region ol positive Lebcsgoe measire,
gl is any Lebespoe integrabile Function, aod g, (2 15 an
equilibrium disteibution. (5.2.9y

Relaxation of Liouyille's equation means that, despite the almost-periodici-
ty of the mechanical motion, statistical mechanmcal predictions settle down
to equilibrium. For example, suppose that a gas comtamimg N particles is
initially confined by a partition to the left-hand half of o box, and that at
t = 0 the partition is removed. 1T we are usked to predier the number of
particles n in the left-hand side after, say, ten minutes, based only on the in-
formation that n = N at ¢ = 0, our prediction is {3 = N/2, Furthermore,
i AV is large (larger than, say, 100) then this prediction is highly likely 1o he
nearly correet (e Section 35), That i, it is Dighly Hkely ad o= N2l
to= 10 minutes, or at any other tme which is long compared to the relaxi-
tion time (the relaxation time is the time for i) to “relan™ to approximately
Ni2). Allof thisis true despite the fact that, aceording to the almest-periodici-
iy of mechanics, there is o posyibifiny thay at any purticalar e 2ol the
particles have spontancously returned 1 the Telt-hand hall’ of the box.

Thies the fact thit statistical mechynies deals with a prabability disteibne-
thon rather than with a single phase point is sufficient to mtroduce the ap-
proach toequilibrivm mto the theory, althaogh it is not sufficien) 1o introdue
non-Tine-symmelry.

Befare discussing how non-time-symmetry enters into statistical mechanies,
let us pause 1o consider the charicter of the distribulion o, (%) ta wlich the
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exact distribution relaxes (in the sense of weak convergence) for Jong times.
We can determine the asymptatic distribution directly from g (¥, 0) and the
constants of the mation i (4, ..., 000, withoul solving Liouville's equa-
tion, This is due to the facts that gl and g (x, 0) must yield the same re-
duiced distributions for the ¢ (2, and pu,(x) must depend onfy on the ()
fece (38,13, These two conditions completely dereemine pg(x) in terms of
0 0) and 1he b (y),

Note that g (x, t) does not necessurily relax to thermal equilibrivm, since
el 0] 15 nol necessarily the ennonienl distribution (3.9.1). According to the
preceding paragraph, p relaxes to theemal equilibrium if the following condi-
tiors are satisfied:

{a) The energy is the only constant of the maotion:
() AL 1 = 0, the reduced distribution for énergy is the canonical energy
dlatribubion, be. for any E and Tor smpll AE.

J ole.0) iy = MI de.  (5.2.10)
Ex<ilizivE+AE £ E<Hin)<E4udl

We will discuss these two conditions,

The question of the number and character of the constants of the motion
is o deep and difficult problem of classical mechanics, Since grq(x) must be
Libesgue integrable, we are concerned here only with the number of Lebesgue
fitegrafle constams of the motion, The question is: is the enerpy the only
such function? For uny system whose Hamiltonian is the sum of two or more
parts, each part depending on a different set of particles, the answer is “no”,
since each partial Hamiltonian s conserved. Thus a system of non-interact-
g patticles will nol i general relax to hermal equilibeiom, Bul 10 seens
reasonnble (or ab lepst conceivable) that interactions (no matier how sntall)
between the particles could “destroy™ all the one-particle constants of the
motion so that the only ones remaining are the seven standard constants of
the montion: energy, the three components of the total momenturm, and the
three components of the total angular momentum, But if' the system is
confined by external farces, the momentum integral is destroved ; and if the
confining forees are not all directed toward a single foree center, then the
angalor momentum integral |s destroyed,

Thus. it appears plavsible that, for most interacting many-body systems,
the enerey is the only Lebesgue integrable constant of the motion, so that
condition (a) holds. In fuct, Sinui® has verified this conjecture for the special
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canst of N hurd spheres confined to a box, where N muy be uny inléeger greaier
thin or egual 1o 2.

There seems to be no purtivular reason 1o suppose thit g Cx, 0) will satisfy
condition (b). 1 (a) is satisfied but (b) is not, then g (x, 1) will relax (in the
sense of weak convergence) to an equilibrium distribution which is dependent
only on the energy but which is non-canonical, Now, recall that throughout
this book, oll systems have béen ussumed to be elosed, e lo have pon-rian-
dom, time-independent Hamillonians, 11 is possible that the introduction of
s random internetion or of a time-dependent interaetion between the system
and its environment could re-arrange the energy distribution, and drive the
system 1o thermal equilibrivm, We conclude, finally, that the relaxation of
@ (x, 1) 1o an energy-dependent equilibrium distribution is a general feature
af statistical mechanios for closed, finite systems, Dot that inleractions with
Lhe environment are probably responsible Tor Goally driving g (v e the
camonical distribution,

Mote that, even in cases where o (v, £) does not relox weakly to pe (v 101s
still possible for statistica] predictions abouta limited number of observables
1o approach the canonical predictions as ¢ - o, In o specific example 1o be
studied in Seation 5.6, it will be found that the expected total momentam and
expected center of miass converge to the canonicul predictions, even though
o (x, 1) does not relax weakly 10 pg ()

We will now examine the question of the non-time-symmetry ol statistical
mechanics, We have seen that Liouville's equittion, considered without re-
ference to other principles of statistical mechamics, is not sufficient o intro-
duce non-time-symmetry. We will find that Jaynes” principle, plis the fact
that experimental data may refer to the present or the past but not Lo the
future, implies that statistical mechanical predictions are non-time-symme-
tric. In this Section, we will show this anly by Tooking at a few simple exam-
ples. We will give the general mathematical formulation of this resull in
Section 5.4,

Let the system be an N-body gas in a box, and suppose that the measuring
instriument measures 1he preciss nombee of paetiches gt left=hamd Talbdof
the boxe AL = t,, Tet the Tollowing dotn be given:

(i} At the present instant £, all the particles are in the left-hand half. That
is, mlrg) = N.

IF we apply Jaynes” principle to this data; we will get the usial irteversible
predictions for ¢ = rg: it will be predicted that (with high probability) a(r)
decrenses as 1 inereases, and that for Tong times o(i) = N/2.
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Now let the following date be piven ot £ = f,:

(1) One sevond earlier, ut £ = 1, — 1, all the particles were in the left-hand
Wall, That is, a(ty —1) = N.

Jaynes” principle, applied to this dota, again yields iereversible predictions
about future values of u; for ¢ = 1, wlt) will be predicted (with high prob-
ability) to decrease toward N2 (In fuct, predictions for Lime ¢ in case (i) are
identicul with predictions for time £ + 1 in case (i),

Finally, let the dath given at 1 = t; be;

(iti) Ome second in the future, at 1 = 1y + 1, all the particles will be in the
left-hand hall, That i5, n (6 4 1) = N.

Jaynes” principle applied to this data yields “reversed” predictions about »
during £, 10 1, + L. It will be predicted (with high probability) that nis) in-
creases from w(ts) < N ton(ty + 1) = N duting 1y to re + 1.

The predictions in case (iii) are non-physical: we hardly ever observe yi(f)
Spontaneously increasing from n(iy) < Nto s {tg + 1) = N The non-plivs-
ical predigtions result from the non-physical nature of the assumed data:
exparimental information may refer to the present (as in case (1)) or the past
(s inease (1i)), but never to the future. That is, it is impossible for an observer
to obtain experimental dava abour the future; any pssumed data which vio-
liates this principle leads 1o non-pliysical predictions, This asymmetry between
past and future appears to be a fundamental feature of the physical world,
not explainable in terms of any more fundumental principle,

Gieneralizing on the basis of this example, we have;

Non-Time-Symmetry of Classical Statistical Mechanics.
Froam the facts that

(i) statistical mechanics deals with a prabability distribu-
ton satisfying Liouville's equation;
(110 the imitial distribution is delermined by Jaynes' prin-
ciple
(i) experimental data never refers to the fulure:
it follows that there exist sequences of predictions which

are consistent with statistical mechanics and Tor which the
time-reversed sequence is not consistent, (5.2.11)

We will formulate this statement in o more specific and more quantitative
way in Section 54,
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Thus, predictions bused on classicul statistical mechanics are bath relaxing
snd non-time-symmetrio; hence classical statistical mechanics is irreversible,

The irreversibality of statisteal prodictions is not physically significant un-
less these predictions are likely to be experimentally correcr. But we showed in
Section 3.5 that, as o general rule, stutistical predicuons are highly likely 1o
be correet provided that & is large, Thos, for krge N the experimentally
ahserved behavior is highly Iikely to canform to the irfeversible predictions,
Briefly, many-body systems are highly likely 1o behave in the usuul irre-
versible manner,

[ s bmportant 1 note that, in the preceding paragraph, “lorge N does
not mean “infinite N7, That is, the statisticu] mechanical explanation of iree-
versibility does not rely on the assumption that N s infinite. 1tis elear, from
simple physical exumples, thutany satisfactory statistical explasation of ivre-
versibility must not assume N — oo, For instance, a sel of pool bulls behaves
irreversibly (they are highly unlikely to spontaneously return to their original
trigngular arcangement | despite the Gaet thiat N is only 16 The effect of ¥ on
irreversibility will be brought out more clearly in Section 5.6, where we will
give an exact analysis of a simple N-body system,

In order to gain further insight into the non-time-symmetry of statisticul
mechanics, consider once again the particle ina box. Let the measuring instru-
ments be M,, My, My, as deseribed in Section 3.6, Recull that M, deter-
mines whether 0 < ¢ < L/2or L{2 < ¢ < L; My determines whether p > 0
or ¢ < 0; M, determines in which energy shell ab < |p| < (n 4 1) b ihe
parlicle lies. We will examine the evolution of (¢ for severul choices of the
imitinl data. We will tnke the initial time as ¢ = (.

Case (1) At r = 0, the gbserver is given the informuation that at the pre-
sent instant (Le. at 7 = 0) the instruments show 0 < g < £/2,
p=00<|pl < b

We have seen in Chapter 3 that Juynes' principle then leads ta the initinl dis-
tribution of Figure 1. and that Liouville’s equation implies that {g, evolves
us in Figure 2.

Cuse (1): At 1= 0, the observer is given the informatlion that al 4wl b
seconds earller (e, ar ¢ = —dmhlb), the instruments showed
D<g<li2.p=0.0<|p| <h

Tt follows that at the initial instant (r = 0) the particle must be in the shaded
region shown in Figure 3. so that Jaynes” principle implies that g (g, e, 00 15
constant aver this fegion oo eers outside, Figure 4 shows the subscgquenteyo-
lution of {q7,.
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Case (1ii): At r = U, we are given the information that at 4mL /b seconds
i the funeee (Le. at ¢ o= dmL b, the measuring instruments
will show0 < g < Lf2, p > 0,0 < [p| < h.

This duta tmplics thin at the initial instant (¢ = 0), the particle muost bein the
shaded region of Figure 5, so that Juynes principle implies that o (g, p, 0) is
constant over this region. Figure 6 shows the subsequent evolution of {g5,.

[ Figures 2 and 4 the oseillutions of (g, die outwith increasing r, but in
Figure 6 the oscillations inerease during ¢ = 0to dml /b Thus (g3 continual-
Iy approaches its equilibrium value in cases (i) and (ii), but departs from is
equilibrium value during r = 0 to ¢ = 4mL/b in case (ili). The non-physical
departure from equilibrium in case (iii) s due to the fact that the given in-
formutian refers 1o the future cathier than {as in cases (i) and (1)) to the pres-
ent o the past. Note thal, even in case (i), predictions must (pecording to
the reluxation property of Liouville's equation) eventually relax to equili-
brivm. In cases {iit), the relaxation toward equilibrivm does not begin until
t = dmlLh.

It seems elear from this example that, i the given information refers to
the present or the past, then statistical predications exhibit the usuul appraach
to eqitilibriom, whereis if the information refers to a time £, secands in the
Futire, then predictions may exhibit o non-physical departure from equili-
brivm during ¢ == 01y,

Summarizing the results of Sections 5.1 and 5.2: we can derive (i.c. ex-
plain} irreversibility on the basis of classical statistical mechanics, but not on
the basis of pure mechanics. Mo special assumptions (such as N -+ oo, special
initial conditions, special types ol inter-particle interactions, or internctions
with the environment) are needed in the derivation. Al thit is necded are the
two hasic principles of statistical mechanics (Jaynes' principle and Liou-
ville's eguation) plus the fact that experimental data never refers to the
Future,

53 IRREVERSIBILITY AND QUANTUM STATISTICAL MECHANICS

Quantum statisties 15 in many ways parallel o classical statistice, so we
might expect that any discussion of quantum rreversibility would simply be
a restatement, in quantum language, of classical irreversibility, As we will
s, the situation 15 nol thot simple,

As sepurds thmg-symmetry, the quantum and elassical sitnations are the
same. From (3.1.2) we have (with g = (q,, oo )



132 Conaupta in Slatistical Mechanics

Time-Symmetry of the Quantnm Liowyille Equation. e
the initial mixture [P0 ) wilh probabilivy p, | evelve, dir-
prige O o 4y dnto P (g, 0) withe prohability pof . Then the
initinl mixture [ *(g) with probability p,} evolves, dur-
ing 0 to r, into [9"* (g, — ) with probability p}. (5.3.1)

Thus, if o certain sequence of predictions is consistent with the quantum
Liouville equation, so is the time-reverséd sequence,

Despite the time-symmetry of the quantum Liouville equation, it i5 clear
that Jaynes” principle {when combined with the fact that experimental data
never refers to the future) leads to the non-time-symmetey of guantiam
statistical mechanics. The argument here is precisely the spme as the corre-
sponding argument of Section 5.2 Thus, quantum stutistical mechanics 1s
non-time-symmetric,

We now ask: are quantum statistical predictions almaost periodic? We have
seen, in (5.2.9), that ¢lassizal statistical p'rucli'r:tinrw relig and hence cannot be
almost periodic. On the other haod, o the quantm cise we have:

Almost-Periodicity of Quantum Statistical Mechanies. Let
the initial density operator have the form

ﬂfﬂ] = ? |Illi:" =M< i‘jrmr

where the possible states |'¥ 0y form w discrete set, and
where cach possible state 75 is expressible as a linear
eombinition over i discrote seL ol eherpy cipenstates. Then
g0y is-ahmasl periodic. That is, forany. e = 0, therg exist
infinitely moany times © (apread over 1he whole range —
to o) such that [#ey — S(0)] < & Here, the norm | 4] of
an operator is defined by |A]* = Tr 4'4. (5.3.2)

This result was first proved by Ono?, and independently by Percival”. A
proof is given in Appendix D, Thus, 4(¢) keeps returning arbitrarily “near”
1o @(0). 1 follows® (see Appendix I3 that uny quantum statistical expectation
value €A%, = Tr(i4) keeps returning arbitrarily near to A3, _p.

Thus there is o fundamental difference, as regards irreversibility, beoween
clussical and quanium statistics; Elassical prodictions el wlnle guaniam
predictions are almost pariodic.

As an example, consider an N-bady gas ina box, and let the initial distribu-
tion correspond 1o the information that at ¢ = U, all & particle are in the
left-hind Tnlf of the box, The atial disteibuation G (e 0 00 the problem s
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reated elassically, @(0) if the problem is treated quantum-mechanically)
containg the wformation that *a(0) = & with probability 1", where wit)
means the number of particles in the left-land half, Classically, o (x, 1)
evolves in such a way that, for all £ > v, (7, = some “relaxation time"), the
distribution g (¥, 1) containg the information *“|u(r) — N/2| < & with prob-
ability P = 1, where ¢ <€ N, ie. it is nearly cerlain that ot} = N2, But
quantum-mechanically, §(r) evolves in such a way that, at some “re-
gurrence time” r, all predictions are nearly equal to the initial predictions;
hence diry must contiin the information *[n(t) — N| < ¢ with probability
P = |, wheres < N, i, itis nearly certain that at time v all N particles will
be back in the left-hand half, IT the system is nearly classical (i.e. if classical
statistical mechanics yvields a pood approximation 1o the “rue™ guanium
witvatian), theh we expeel that ¢ & ., and Murthermors that ¢ will be very
long on the lub scale,

Thus, there is & certain “eoherence™ in quantom statistical predigtions:
predictions might appreosch equilibeivm over a finite period of time, but it we
ure just willing 1o project far enovgh into the future, we can re-obtain all the
initial predictions. Note that the recurrence of quantum statistical predic-
tions is @ moeh stronger and experimentally more significant result than the
aimiple mechanical recurrence of the ¢lassical phase point (the Poincarsd
recurrence theorem) or the quantum state vector, The mechanical recurrence
thearem say merely that the initial mechanical state will recur. The quantum
statistical recurrence theorem says that, not only will the initial quantum
stute recur (e, not only will all N particles eventually réturn to the left-land
Ll of the contiiner), but that furthermore it is possible to predies with ligh
probability, even on the basis of lmited initial data, when the initial situstion
will recur (e.g. the time 7 at which all particles will return 1o the left-hand
half}).

Thus, it appears that irreversibility is a general property of classical sta-
tistical mechanics but not of guantum statistical mechanics. More precisely,
clussical statistical mechanics exhibits relaxation, whereas quantum statistical
mechanics does not. If we regard quuntum mechanics as the true description
of the physical world, then irreversibility holds approximately for all nearly-
classical systems (L.e. systems whose true quantum behavior is approximated
rensonably well by elassical mechanicg). For suih aystems, the time © for
predictable recurrénees (or for any other predictable macroscopic deviahion
from the asymptotic equilibrium state) to occur must be very long on the lab
seabe. But for strongly non-classical systems, wie have no feason 1o expect
anything like irreversible behavior; the time 7 for predictable macroscopic
10 Hobgon 0324)
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fluctwitions Lo vecur could be of the order of the relaxation time, in which
cage nothing Nke relaxation to equilibrivm will take plave. Thos, irreversibil-
ity is not imbedded in the general theory ol quantum statistics but is im-
bedded in the general theory of classical statistics. For strongly non-clissical
systems, thie question “does the system exhibit nearly irreversible behavior?”
can be answered only case-by-case, by looking at the statistical evolution of
the particular system in question. General discussians of irreversibility must
be carried out within the framework of classical statistics:

Mow, most many-body systems are nearly classical, provided only that the
temperature (more generally: the total energy) is not too low. Thus, Irneversi-
bility applies 1o falling waterfulls, boxes sliding down inclined planes, and
the like. (More precisely: such systems exhibit irreversible behavior for times
which dre long on the lihoratory time-scale. However, the quantum-statisti-
cil recurrence theorem implies that, even for nearly classical Syslems, guin-
tum realities must eventually assert themselves and predictable recurrences
must eventually take place if one is only willing 1o wait long enough. We
expect that, for nearly classical many-body systems, the time required might
be some lurge multiple of the age of the universe.) Such “few-body" systems
asthe 16 poal balls are also nearly classical, since the individual particles (the
poal balls) are themselves nearly classical ohjects. Thus, the pool balls exhibil
irreversibility; for example, it is highly unlikely that a scattered set of pool
balls will spontaneously re-form into a triangular arrangement at rest with
all the energy and momentum transferred to the cue ball. But a highly non-
classical system (e.g. a many-atom system at low lemperature, or any fow-
body system composed of atomic particles) might very well exhibit highly
coherent, recurrent behavior.

Super-fluids and super-conductors are prime examples of many-body
aystems which, dueto their highly quantom nature, do not exhibit irreversible
behavior. These systems are structured in such a way that a macroscopic
abscrver, possessing only limited control over (and hence limited informa-
tion about) the initial state, can produce prediviable recurrences in the state
of the system. Such many-body recurrences can be produced in efavsival
systems only if the observer has detailed control over the precise initial state.
For example, in order to make the 16 pool balls return predictably to their
initial triangular configuration with the cue ball absoching all the energy, the
observer would have 1o start the balls with precisedv the vight velocities. The
significance of the quantum statistical recurrénce theorem is that even a
poarly informed observer can prediol recurrences in a many-body system
which is highly quuntum mechanical.
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Mathematically, there s av interésting formal similarity betwein classical
dnd okt systems s regards the gquestion of wlmost-periodicity. The
similarity is as follows;

(1) Botli classical and quantum pure states are almost periodic.
(i) Classicul and quantum mised stules, where the mixtuee is discrete, are
almont periodic,
(iii) Classical and quantum mixed sttes, where the misture is continuous,
appeuar 1o relox;

Result (1) 15 just a re-statement of the Poincaré and Ono recurrence theo-
rems. Y Result (i) for quantum systéms is just a re-statement of (5.3.2). In
Appendix ) we give the prool of (i) for the classical case,

both classical and quantum sysiems. In Section 3.2, we showed that con-
tinuous mixiures relax for any classical system whose mechanical motion is
unstable, and we argued Lhat nearly every classical system of phyvsical interest
15 unstable, Statement (i) remains largely uninvestigated Ffor quantum sys-
tems, Quantim statistical mixtures over a confinnons sel of states requive &
density operator formalism based on the notion of the eigendifferential,'®-!!
and 1his makes matters rather complicated.

Asann exaniple of a finite (e N finite, volume finite) quantum mechanical
gysten deseribed by i continuous mignire, consider a single one-dimensional
particle in a box 0 < g < L (infinite potential well), and let the given data
be 0 < g < L2, Jaynes’ principle then implies that the initial mixture is
spread out over all the coordinate eigenstates ¢, where the eigenvalues ¢
range over the continuum 0 < ¢ = L/2. This example is studied in Ref. 10,
where it s tentatively concluded (but not proved) that the predictions relax,
This type of example (Anite system, deseribed by o continuous mixiure) is
probably nol of muoeh practical importance, since in practice the given data
always includes o statement about the energy {for instance, <> might be
givend, and rhis will normally suffice 1o produce a diserere mixture.® For in-
stonee, in this above example of the particle in a box, it conbe shown that if the
given data is 0 < g < L/2 and (A% = E (E given), then Jaynes' principle
implies thet §(0) 15 8 mixture over a discrete set of states.

Thus, whether the system is classical or guantom mechanical, discrete mix-
tures are almost periodic while continnons mixtures relux, The fundamental
difference between clussival and guantum statistics (e, the relasation of

= This lact was pointed toome by LOC Percival in a private commanicution.
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classical statistics versus the almost periodicity of quantum statistics) then
resides solely in the fact that classical mixtures are generally continuous,
whereas quantum mixtures are generally discrete, That is, we can trace the
distingtion hack to the comtimions nature of the classical world versus the
diserere nature of the quantum world,

Ag n simple example, consider the spin 1/2 parficle in a static external
magnetic field By directed along the = axis (see Section 4.2). Let the given
duta be

{Sprmp = A (A given). (5.3.3)

Jaynes' principle leads to the initial density operator

g0) = (5.3.4)
where, for proper normalization,
A(x) = 2 cosh (nft/2}. (5.3.5)
Since the Lagrange multiplier & must satisfy (3), it follows thitt
— {2 tanh (afi(2) = A. (5.3.6)

Fram (4), it follows that 4(0) has the form of (4.3.8), with

p = (Prob. of | +a) = ZRL=202)
Zix)
iz (5.3.7)
= [thh of ]._.,1-1}} = E.’.‘.EM._.}
A
It follows from (7) and (4,3.11) that, in energy representation,
X 1/2 = tunh {xf2Z) exp (2 Bat)
1) = ( PR ) (5.3.8)
' —tanh {xh/2) exp (—fBt) 12

where ¥ is the gyromagnetic ratio. Patting (7) futo (4.3.02) and (4.3.13), we
find that

{os, = A cos [y Bt (5,39
a¥(5) = W[4 — A? cost (yBat) {53,100
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Equation (8) shows that the density operator is exactly periodic with fre-
guency o = ylg; (9) shows explicilly that predictions about 5, are exuctly
perindic, and (10) shows that furthermore the reliability of those predictions
is exnctly periodic, {Note that (5.3.2) requires only that predictians be almost
periodic; the exact periodicity obtained in this example is a special case of
almost-pertodicity),

64 THE GENERALIZED SECOND LAW

Accarding to the preceding seotion, general discussions of the approach 1o
equilibrium must be based on classical stitistical mechanies. Thus, in the re-
mainder of this chapter, we will congider only classical systems.

The second luw of thermodynamics is an important generalization ubou
the physical world, In jts usual form, the second law 15 a statement only
about equilibtium situations, 1t is obviously desirnble to find a generalization
of the second law which would apply also to non-equilibrium situntions.

In order to find such o generalized second law, we must first extend the
entropy concept to non-equilibrium situations. Thus, we seek o generalized
entropy which reduces to the usual thermodynamic entropy (3.9.0) at thermal
squilibrium, An obvious candidate for such a peneralized, time-dependent

entropy is
—k [ o (e, 1) In [N o (v, 0] dxc.® (5.4.1)

Unfortunately, this expression is wrong. The problem is that (1) is time-
independent, as we will now show: The distribution g (x, 1) is a (time-depen-
dent) integral of the motion. Hence the integrand of (1} is an integral of the
motion. But the integrated value of any integral of the motion over any in-
variant tegion (i.e. wny region which transforms into itself inder the natural
motion of the system)isconstant, Since the entire phase space is an invariant
region, (1) is constant.

Some authors'® ' huve assumed (1)to be the appropriate expression for
the generalized entropy and hive argued that, since (1) is time-independent
for closed systems, it follows that only open systems ¢xhihit irreversibility.
But we hive seen in Section 5.2 that, even for closed and finite systems, irre-
versibility is embedded in the structure of classical statistical mechanics.
Thus, it should be possible to find a generalized entropy expression whic]y bs
vitlid far closed systems,

* In case there are ¢ different species of particles, N1 should be replaced by Nyl Nple
If all the particles ave distinguishable, the N1 should be amitted.
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The most popular expression (see, for instance, Rel. 14) for a gencrolized

entropy s — Kk [ g (0 2) In (AN 6, (x, 1)) el (5.4.2)

Here, pg, (%, 1) is a “coarse-grained” probability distribution, defined in
terms of o (x, t) by

Peg (%, 1) = J‘ p i) d.t'/-[ ds' (ve i), (54.3)
u‘ #,

where the phuse regions or "eells™ Ry form a partition of the phase space,
Thus g is & step function taking on different values in different cells. It is
possible in this way 1o obtain a gencralized entropy which is time-dependent
for closed systems. One drawback to this approach is that the coarse-grained
entropy (2} 18 dependent on the manaer fnowhich the eglls B, ave delined bnd
there appears to be no physical reason for preferting one choice of the cells
over another choice.'* "% Another difficulty is that, if p (v, 1) is un_rmnir;'ul.
then gg, (x, 1) is nor canonical wnd hence (2) does oot agree with the sl
equilibrium entrapy at thermal equilibrivm, Thus, we will not adopt (21,
The propertics which appear desirable in a gencralized entrapy Sir) are:
() 5(r) reduces to the ordinary thermadynamic entropy at thermal equi-
librivwm;
(k) S(1) generally increases (although not necessarily monutonically—see
Section 3.9) as the system approaches equilibriom;
(€) S(t) is a “macroscopic observable™, Le. ST depends only on the
vitlues of the observable quantities.

These properties say that S(1) is actually a generalization of the equilibrium

entropy, that Ste) is a measure of the approach to or departure from equili-

brium, and that S(¢) has experimental significance at the macroscopic level,
The following definition satisfies all three of the above eriteria:

Generalized Entropy. Define S(t) by
Str) =~k [@(x, 0 In [IP¥NYG (x, 1)) dy

where i (x, 1) is that distribution which maximizes the un-
cerfainty subject to the predicted values of the observables
at time £. That is, let D{0) be the nitial data concerning
observables Af, and let the corresponding initial distribu-
tion be p (x, 0). Afler o time £, p hos evolved via Liou-

* See footnole, page 137,
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ville's equation into p (v, r), Let the predictions about M
ol ime ¢, on the basis of @ (v, 1), be D). Then @ (x, )
maximizes the uncertainty (1) subject to D), (5.4.4)

This prescription sutisfies criterion (n) above, since at thermal equilibrium
the data is {H{x)3, and maximization of the uncertainty subject to piven
< M)y yields the canonical distribution and hence (4) becomes the eanonical
entropy (3.9.6).

The definition satisfies (b) in the sense that, for any r,

St =0 < 8ty §(r—+ @), (5.4.5)
and furthermare if the process is a non-equilibrium process then
S(t=10) < §( - o). (5.4.0)

Proof of the first inequility of (5):'® Expression (1), where o (x, 1) obeys
Liouville's ciuation, is time-independent. Since both o (x, 0) and §(x, 0)
mpximize thi: uncertuinty with respect 1o I(0)

@ (%, 0) = g (x, ). (547

Both ¢ (x, £) and @ (x, £) must be consistent with the predictions D{r) but
i (x, 1) musimizes (1) with respect to all distributions consistent with £(t).
Consequently,

Sty = =k j_E{rHu XN e
= =k [olt) n [PNNYo(n)] dx
= —k [ o) In [HONANY 5(0)] dx

—k El0) In [WAVNE0Y] di = S(0).

Proof of the second ineguality of (5): The predictions D(r) must preserve
the dnitin) information concerning constants of the motion, If ¢ (x, £) con-
verges weakly to equilibrium us ¢ — oo (according to Section 5.2, this
condition appears 1o hold for all physically interesting systems) then all data
aboul *non-constants™ of the motion is Tost due to phase-mixing, Hence,
D(t) contains all the information contained in D (f -+ o). Since §(x.1)
maximizes (1) subject to D(r) while d (x, 1 -+ o) maximizes (1) subject only
to D (s = o), it Tollows that S(t) < §{r— «).

Proof of {6): For non-equilibriom processes, D{0) must contain inforina-
tion aboul non-constants of the motion, Thus 2{0) contains all the informa-
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tion in £ (f =+ oo}, plus additional data about non-canstants of the mation.
Thus the inequality must hold,

The definition satisfies eriterion (e), sinee onee the macroscopic data D) is
given, @ () and henee S(0) are determined,

For closed systerns, equations {5) and (6) constiture the generalized second
taw of thermodynamics. (We will nol considar apen systems, i wlhich "gener-
alized heating” may be done on the system). Equation (5) says that there
exists a function Sr), dependent only on the predicted values of the obsery-
ables, which takes on its minimum value at the instanl r = 0 at which the
initial data is obtained, and which attains its maximum vilue as @ -+ o,
Equation (6) says that, unless the evolution of the system s o sequerce of
equilibrivm states, the linal vilue of 8 is necessarily greater than the initial
value. Bguation (5) is a dircet generalization of e stanidard (equilibrium)
form of the second law. The standard second law refers only 10 the initial
and final predictions £(0) and D (r -+ w), The generalized second law refers
1o the time-dependent prediciens D, and imphies the standard second law
loor INOY aned D {r -+ ei). Y

The peneralized second law implies thatl statistical mechanical predictions
are non-time-symmetric. Proof: Assume that the following sequence of pre-
dictions (4, B, €, ...} aobeys (5), where ) < £, < #;:

Adati=0, Batr, Cally,...

Since this sequence abeys (5], we have (assuming that the incquality holds,
ritther than the equality) StA) < S(C), Le the entropy of 1he duti € is
greater than the enteopy of the datp A. Mow consider the time-reversed
sequence, beginning with data

Cutr =0, Bubry, At ds..

Since S{A) < S(C), this sequence does not obey (5}, Heove this sequence js
not permitted. This compleles the general proof, pramised in Section 5.2,
that statistical mechanics 4 non-reflective.

The non-equilibrium entropy needn't be a monatonically increasing fune-
tion of time, As was pointed aul in Section 3.9, 8r) may be non-monatonic
and still agree with the standard form of the second law, Tn other words,
during a portion of & nop-equilibrium process the mucroscopic predictions
Dit) eould spontancously move away from the asymptotic data D (- @)
without vialating the standard second law, In Section 5.6, we will give an
example illustrating the non-monatonic behavior of S(t).
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We will now examine the form of § for miny-body systems. As was dis-
cugsed in Section 3.5, the data for such systems ordinarily takes the form of
expectation values, Thus the initial data has the form:

{BlX =e = G:lﬂ] i=1,2,,.,m {(5.4.8)

where the G,(0) are given. The macroscopic observables are then the g0
and the predictions O(r) are

Gy = Celx)ye = [adx) ot t) dx (5.4.9)

where p (x, 1) 18 determined from g (x, 0) via Liouville's equation. According
to (2.4.10), the distribution maximizing the uncertainty with respect to the
dutn (8) s

Fln0) = Z (Dyexp | =3 al0) m{x}] (5.4, 10
]
where _
Zi) = J-c.w =5 a0y g | dx = Z o (0D, e talM] (540D
- s

and the multipliers a,(0) are determined in terms of the G,(0) by (8). At later
times, the distribution @ maximizing the oncertainty with respect to the
predictions (9) is

i 5 1) = 271 exp [~}:'a1rrwg.{xll (5.4.12)
]
awvhere

Zir) =J‘cxp I—‘}:Jlxr:,l::} gg{-\’-']J de = Z[m (1) ooy iult)) (54.13)

and where the multipliers a,(t) are determined by the predictions (9), i.e. the
air) are chosen to sutisly

G1) = j i(x) @ (x, 1) dx. (5.4.14)

Thus, § retans a “generalized canonical” form at all times (compare (3.6.6)),
and the generalized entropy (4) becomes

; Z[m (0, %l ] | ¥ - _
o) = kn {ZE200 |+ Zx06i) = S 160, 6001
(5.4.15)

Mote that (by (1) @ (x,0) = g (x, 0). However, at luter times l.wr: have
gix, 1) # g (x, 1), since g (x, 1) does not retain a generalized canonical form
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Several previous nuthors have used a generalized entropy either identical
to or similar to the generulized canonical entropy defined by Egs. (8)-
(153,197 ** This definition of the non-equilibrium entropy is implicit in the
work of Jaynes.'™ The distribution # (x, 2) is the “simplest”™ distribution (i.e.
the distribution containing the Teast information) whivh describes the pres
dicted values of the ahservahles, Thuas, iF we desive o Deory which desoribes
the evolution of the macroscopic abservablis and which, aside from this
requirement, is as simple as possible, we should take §(x, ) ruther than
g (x, 0} as the fundamental distribution function of 1he theory, Using the
initial condition (10}, Robertson® has derived the equation of motion far
a (x, t}; this procedure makes possible on efficient derivation, from Liouy-
ville's equation, of the exact equations of motion for the evolution of the
mueroscopic observables ina manysbody system, The resull is o closed set
(i.e. the only unknowns are the magroscopic observables) of coupled, non-
linear, imegradifferentinl equations for the ohservables 4

6.5 MEANING OF THE GENERALIZED SECOND LAW

In this Section it will be necessary to distinguish statistical predictions from
experimenial outcomes. We will denate experimental dara with an asterisk.
For example, the predicted particle density at the point q at time ¢ is 5 (g, £)
= {nlq; x)), (see (3.4.8) and (3.4.9)). The éxperimentally measured density
is then denoted #* (g, 1)

The generalized second law says that there exists a function of the predicied
vitloes of the observables, namely the function (5.4.4), which obeys the in-
equalities (5.4.5) and (5.4.6). This is & mathematical consequence of Liou-
ville's equation and is troe regurdless of what interpretation we give 1o (5.4.4),
(5.4.5) andl (5.4.6). It is, however, inleresting 1o interpret these equations.

The generalized entropy (5,4.4) has o very simple interpretation: Lottfag
M represent the measuring apparatis uxed in obraining the initinl experimental
dara I¥(0), S(r) is the observer’s wncertainty about the phase point x at tie 1,
when fre knows only the fesfantancouy precictiony Die) coieerning M, This
interpretation follows from Jaynes' principle (Section 24); it is o dircel
generalization of the interpretation, in Section 3.9, of the ardinary thermo-
dynamic entropy.

We usually establish g (v, () by altering a constraint i a system which was
previously at equifibrivm. Our interpretation of the stoodard second low
(Section 3.9) said (hal, no malter how we aller the consirainis ot £ = 0, the
asymplotic predictions (8 -+ a0) cannot contain more information (but
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may contain less information) about x than did the initiel data 20, The
interpretation of the generalized second law is a straightforward peneraliza-
tion of this idéa, The generalized second law States that an observer whose
mmeasuring stenmients M pield fesy than complere information can never gain
intfornmation (e may lose information) about x by manipdating the consteaints
i @ elosed system; that is, the predictions D00 concerning the outeone af a
measurament with M ar time 1 conrain lesy dnformarion abour x than the ex-
perimipral dara DYO) obfatmed with M af 1 = 0,

The pencralized second law (54.5) s an extremely brood prineiple. It
applies to any mechanical system for which g relaxes (in the sense of weak
gonvergence—see Section 5.2) to equilibrium; even if p does not relux, the
first inequality of (5.4.5) 15 sull valid and hence the interpretation ol the
penerilized second law given in the preceding paragraph is still valid. The
penernlized second Jaw broadéns the standard sécond law in two impartant
ways: the generalized second law applies to any set of observables (i.e. mea-
suring instruments) M, rather than only Lo the standard thermodynamic
vurtubles; the generalized second law applies to every instant r during any
non-equilibrium process, rather than only to the initial imstant 1 = 0 and the
asymplotic replan § - oo,

Both the ovdinury second Taw and the generulized second law are sratisiva
laws; that is, they refer only o the predicted or expected yalues of the obsery-
ables and not necessanily to the experimentally measured data. The ordinary
second Taw is a relation between the initial thermodynamic dats and the
eepected asymptone valoesof the thermodynamic observables. TUis obviously
possible (although highly improbable If & is lurge) that a measurement made
at some instant ¢ (where ¢ 2 relaxation time) will yield dats which deviates
appreciably from the expected equilibriam values, Such deviations are culled
statistical fluctuntioos. Similarly. the generalized second law refers only to the
expected vilues D(r). A measurement at time ¢ will vield an experimental
result %) which may or miy nol agree with the predictions D), iF N isarge
(larger than, soy, 10—see Section 2.49, then it ts highly probable that £%(r)
= D(r) 1o within experimental securacy, Thus, in any situation in which
statistical mechanics yields statistically “sharp™ (i.e; high probability) pre-
dictions, we may interpret the generalized second law in the following way in
terms of the experimental data D*(¢): The experimental data D*(1), ohtained
with the peasartog dnsteanments M, will fwith high probability ) vield fess fn-
Sorawation ahaut the plase point x than did the infiial experimental data D*0)
abratmed with M.

Broadly speaking, the generalized second low soys that an observer can
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lose information in many ways (by manipulation of the constraints), but can
gain information anly by making new measurements, In facl, um:nr;iing.lu
the preceding paragraph, if the observer is restricted ot time 7 1o the same
measuring apparatus M as was used for the initial measurement, then even
additional measurements are highly unlikely o vield increased information:
such measurements will (with high probability) agree with the predictions
und hence cannot yield pew information. In arder to learn something new,
it is necessary to bring in an improved measuring apparatus.

For example, if the apparatus M measures Uie number of particles pin the
left-hand half of a box of gas, then the generalized second law suys that the
prediction n(f) at time 1 contains less information about the precise mechin-
fcal state x than did the initial experimental data a®(0) = p(0). A measure-
ment Bl at time ¢owill yicld (with high probability) o value (1) which is
nearly equal to the prediction n(r}, in which case #*(t) yiclds kess information
than did #*(0). In order to increase our information about x, an improved
measuring instrument (such as a device capuble of measuring the number of
particles in a smaller portion of the bax) must be brought in.

We can interpret the second livw in terms of the orderliness of the systerm.
In order 1o make chis idea precise, we must give a precise definition of the
womee of order, Rathier thin delining onder, it omore wseful 1o define dis-
order. We will speak of the “disorder of the mechunical state & with respect
to the measuring instrument M", denoted @,,(x). We define 2 0) by

Oulx) = =& [pda') In [OVNY 0, (6] ', (5.5.1)

where o,(x’) is that distribution corresponding (via Jaynes' prineiple) to the
data which would be measured by M if the system weie in the mechanical
stale 3 note that x appears as i parameter in the distribution g,(<').

For instance, if M measures the precise number of particles in the lefi-
hand hall of a box of gas, and if n(x) represénts the precise number of par-
ticles in the lefi-hand half when the phase point is x, then the disorder of the
state x with respect Lo A is givin by (1) where p,(x') is that distribution max-
imizing — [o(x") In [V (') dx’ with respect to all distributions satis-
fying the condition that the lefi-hand half of the box contains mts) piarticles;
Itis clear that, for thisexample, the minimum disordeér is obtpined for points x
sutisfying mix) = O or Nl particles in either the lelt= o right-hand hulf of
the box), and the disorder increases as ol ) appreaches X2, reaching a max-
imum at glx) = N2, Node that the dissrder @4,00) 5 0 miechmmioal congepl

= Seethe footnole an page 117,
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{i.e. it is a phase-function), and that it is relative to the measuring instrument.
That is, a state & may be well ordered with respect to one measuring instro-
ment but poorly ordered with respect to another. According to Jaynes' prin-
ciple (Section 2.4), @ ,(x) is the uncertainty which a mucroscopic ohserver
would have upon making o measurement with M, if the setual (but unknown)
mechanicul state was x. This secms to be a patural definition of the “disarder”
conéepl.

With this definition of disorder, the generalized second law says: If the
fatttial date i obtained with the seasieite Jostewnent M, and i statistical
mechanics vieldy statistically “sharp™ predictions at time t, then it is lighty
likcely that the mechanical state at time t will be less ordered with respect to M
than was the inittal mechanical srate. This statement i5 an immediate con-
sequince of our previous interpretation” of the generalized second law in
terms of the experimental data D*(e), Thus the generalized second law implies
that, for any mensuring insteament M, and Tor any initial data %0, the
mechanical state is likely to be less ordered (with respect to M) at time ¢ than
it was at 4 = 0, Note that this does not conflict with Poincard's recurrence
theorem, which says that eventually the mechanical system will come back
fa it jnitinl stile of “arderliness™.

6.6 AN EXAMPLE: THE N-BODY IDEAL GAS®

The N-body ideal gas illustrates many of the concepts discussed in this book;
it provides a transparent example of irreversibility in classical stutistical me-
chanics. We can give an exact, non-equilibrium statistical mechanical ana-
fysis of this system for all ¢ and for any N, and thus study in detail the ap-
proach to equilibrium, :

Our system is N non-interacting point particles of mass m enclosed in a
rectangular box with perfectly reflecting walls in zero external field. Phys-
jcally, this highly idealized system is the zero-order approximation fo a
dilute, weakly interncting gas. Many important physical effects present in
interacting systems will not show up in this simplified model; for example,
the anly relevant relaxation time for the ideal gas is the so-called “hydro-
dynamic relaxation time™ (related 1o the length of the box), while in inter-
acting sysiems the “kinctic relaxation time" (reluted to the range of the inter-
agtion) is also important. The main virtue of the ideal gus is that it is an
exactly solvahle systam.

We will ussume that the observables M consist of the expected values of
the center of mass, total encrgy, and total momentum. These three quantities
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are thc_ only *global™ guantities having much direct physical significance.
Another possibility Is the total angular momentium, but this quantity is difli-
r.:::ll to deal with when the system is conlined (o u rectungulur box. For
simplicity, we will not consider such “local™ quantities as the expected den-
ity at points roin the box,

Let the mitial data be

CROYY g, CHIE g, (XD, {5.6.1)
where
R(x) = N-1%q, (5,6.2)
Hixys{(2my*Zp-pm (5.0.3)
P(x) = X p,. (5.6.4)

The phase space is defined hy
0 :E fi'_m = "'pu = 0] - |i'lm = l.f_f_,_

The index j tanges aver the particles (F = 1, 2, ..., M), while g ranges over
the 3 directions (u = 1, 2, 3); L, is the length of the uih side of the box.

Jaynes' principle implies that the initial distribution is exponential in R, #
and P (compare (2.4,100), Rewriting the Lagrange multipliers in a more
vonvenient form, the initial distribution is

I . . A
o, 0) = = i ]:-n,, Xy - —'I?—L{p_‘ - I:“]-"-I, {5.0.5)

Qin

where ag, [y and by are chosen to satisfy the data (1), and where by direct
integration

. ho v . =
Z= J‘exp [-nru -y, - Lo Zipy - I!nl’:l dx = (] | Zs,)"- (5.6.6)
ey |

Din

= 2em NP 1 = exp (=g, lL,)

Ziy =( : ) AL, (5.6.7)
fa Hog

The parameters ffy and by have simple interpretations: by divect intepgris
tion,

Pri=o = by, (5.6.8)

b\ _ 3 .
< 2!” >t-|.1' Iﬁq ! {SLﬁ.J}
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so Thal by is the expected momentum of any particle at r = 0, and 327, is
the eapected kinelic energy per partiole atr = 0 as seen by an observer mov-
ing ut the meun velocity byfm, ie. 3(2f, 15 thie expectation value of the “ran-
dom kinetic encry™. If o non-equilibrium wemperature T(1) is defined by the
statement that, far peint particles, the expected random kinetic energy
per particle 15 (3/2y KT(r), then fhy = kT,

The initial distribution (5) would be an appropriate descript fon of a bukst
of non-interacting particles, shot into a box (initially open at one end, and
then closed at r = 0), wheee the total energy is known, and where the posi-
ton and velocity of the center of mass at £ = 0 are known.

By (5), the particles are statistically independent at r = {: by (3}, they are
dynamically independent, T follows (see Section 3.4) that the particles are
statistically independent for all 1. Hence, the N-body problem reduces to N
pne-body problems; this is, of course, the siniplifying feature which makes
the problem exactly solvable.

Using & teehnigue originally suggested by Born, 2 we car find the exact,
analytic solution to Liouville’s equation for the initial condition (5). We
won't go through the details of caleulation here, but will just give the resull
(the details may be found in Ref. 23). The resulu is

W 3
elney=T1 11 0™ (@ P 0, (5.6.10)
wl =
whert the reduced distribution g is given by
Syl .I?_fE] 1 —exp( =y, LH}
Z,, EITQ"LH

0 (@ Poas )=

L) 5 %ol
Zyy Wl &gy + 0Pn

e Tt 51 nn
¥ Cus | — e - ¥ ®
[L (q"" n )] Zy, wot gyl + W0

i

- L S 1) exp (=g ly)] *

x II - [_ U" cxp [_lxﬂu“cnﬂ Ei“ E ({f_r' = Ejﬂ_’)]

L m

5.6.11
where syl py,) wnd 5, (pg) tre defined by (8611

slpy,) = exp [_‘“" (i — hB,,]‘] 4 (=1 exp :&{p_,, 4 -‘rﬂ,]’].

2in | 2in

(k=0,1) (5612)



148 Cancapls in Statistical Mechanics

According to (10) and (11), p (x, £) is an oscillatory function of lime at any
fixed phase point x50 (v, ¢) does not possess a limiit as 1 — oo, e, g dows not
converge strongly Lo any asymptotic distribution as r — w (see Section 5.2).
However, phase-mixing (see Section 5.2 does: occur, and the distribution
converges weakly to equilibrium, We can show this explicitly by caléolaing
the moments {(g,) (pg )5 (roe = 1,2, 3, ) By direet integration, using
the reduced distribution (11), we find?*!

G Yo = Up) (P )< + Fult) (5.6.13)

where the asymptotic expectation values are given by

g ()2 = Jla Y (Y ol (s ) dayy dpy, (5.6.14)

By A% s
Li::l.J U.f,furp,l‘n] U ('!IE_) M ‘5.(!1 5!’
2o 2L,

and where the time-dependent part F,(0) goes o zero as - oo, For
t> J 2figm L, [x the dominant term in F, (1) has the form

Folt) = (const.) e _“2'2) 5
skl ) = {oonst ) 1t eap | ——=—1. A 16
*‘(zm,,c:m ey

(The exact expression for F, (1) is complicated and will be written out here,)
It follows from (13), (14) and (15) that, for any phase-function gx) expressible
as a uniformly convergent Tuylor expansion in the g, and Py Ehe @xpECta-
tion value relaxes to equilibrium:

{Ht'f}}l ~a {Hf-"’l}lu “ j H{"‘"] f.‘nr[-"'] 'd:l:l ts-{‘n | .-”
"
Geal ) = T T 06" s ). (5.6.18)

The distribution deflined by (12), (15) and (18) is an equilibrivm distribution,
i.e. a distribution which is a function only of the constants of 1the molion
(). Thus, the exact distribution g (x, 1) converges weakly, but not strangly,
to equilibrium, All expectation values settle down to the equilibrium values
given by g (x).

By (13) and (16), the coordinate moments (g, ) >, all relux as

exp (—a202 (2, Lom);
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this function has a relaxation time

¥, = J:mﬁ‘, Ay (relaxation time for Clq,,)75). (5.6:19)

The momentun moment <(py, )7, has a relaxation time

{\’E + \,"r;] Wy Ly (relaxation time for {(p;,)">) (5.6.20)
b 4

since (16) has o maximum at J.;lﬂ: Lol and then falls off as exp (—ar®)

with the relaxation time «/2mfly L, /7. Thus, higher momentum moments fall
afl more slowly, so that phase Fonctions having a simple momentom depen-
dence (Le. whose Taylar expansions contain only low powers of the mo-
mienta) relaoy rupidly, whereas phise fungtions having a complicated mamen-
tinm depepdence relix slowly, The reason Tor this i4 that Gibhs phase mising
imphies o steetching outof the initial distribition into finer and finer filaments,
where the flaments (for particles in a perfectly reflecting box) are nearly
parallel to the g, axis (see Figure 3.3-2). The condition for an expectation
vilue Ceix)y 1 be relaxed is that g(x) must vary only a small amount as x
virles from one Alument to another, Thus, {elx)y will relax slowly if gix)
vitrics rapidly with py,, e if g(v) has a complicated momentum dependence.

As will now be shown, the relaxation time (19) is determined by the length
L, of the box and the initial dispersion o, of the one-particke velocity. Using
(8), (9, and (19),

e <('g[u_ _ <_{',-r">)*> = = beine
m N 1= w

L1
fom atn
so that P
1t
r, = et (5.6.21)
.'|'.|!lTN

Thus (neglecting the factor +/ 2fa) v, 15 the time required for a particle moy-
ing at speed o, 1o cross the box in the g direction. As seen in the center of
imnss systenm, 7, is the time requived for the particles 1o spredd out (due Lo
their “random velocities™) over a distance L.

By direct integration, using the exact distribution function given by HEI}._
(11, (020, we find the following exact expressions for the evalution of the

L1 Mabwom (3341
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observables (RY, <HY, (P

'f‘R,u}r = {'fh”-}.- {5.6.22)
MYy =B rwias [5.6.23)
{'Flu.}l = H{F!# (R lﬁ.ﬁ.EﬂF}
where the expected oné-particle position and mamentam ane given by
L N |
E =
i 2w wanh{xg L)) -%u AT o
. 1}
“m(ﬂ'm%ﬂﬂﬂh. (5.6.25)
P L
dapl, . I ’wn’:‘)
- — x
Cpede tanh {(&qL{2) uZhv m;L’ 4 niat 5E ( r?

| sin (ﬂﬂ’i) (ﬂ i d'_._..hlb") + cos ("Rbﬂt) (Hﬂ o .F;“) f
Lan Pl i Lm SN 'a
(5.6.26)

For simplicity, the subscript g is amitted in (25) and (26); the phase angles O,

in (25) are given by -

(A2LF + atm?)'

cos i, =

Thus, {R,> and (P, both undergo a damped oscillatory approach td equi-
libritum. According to (25} and (26), the period of the oseillations is 20, iy,
(this is the time required for a particle moving ut the mean velocity by, /i 1o
cross the box twice in the g direction) and the relaxation time 15 7, given by
(19 or (21). If the dispersion o, in velocities is small compared to the mean
veloeity by, /m (e i the initial burst of particles has a well-defined velocity
hy/m) then the particles bounce back and forth in the box many times before
settling down to equilibrivm. As the system setiles down to equilibrinm, the
initial ordered kinetic energy tums into disordercd kinctic encrgy, not ob-
servable as kinetic cnergy by 1he observer (who is limited to observing <R3,
SHy and (P

We will now investigate the generalized entropy. Since the data is given
in terms of expectation vilues, the formalism of (5.4.8)-(54.15) is applicable.
The distribution @ (x, 7} (see (5.4.12)) has the same form as (5):

fle, 1) = Z7t)exp [-—m[r'.i- Ay - fiﬂ Xipy - bﬂﬂ’]- (5.6.27)
=N
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The coefficients a(r), f(¢), b{t) are determined by the condition that g (& 1)
st yield the predicted values (22)-(24) of the observables, Thus (compitre
(B), 190

bir) = {pires (5.6.28)
3 ICm—ww>‘ (5.6.29)
21} 2m )

If the non-equilibeium temperature T(¢) is defined by the statement that
T2 is the expected kinetic energy per particle as seen from the center
of mass frame, then (29) implies that §(1) = 1/kT(r).

LT {==)]

&Tlo)

1
Ld

Figure 5.6-1  Time dependence of #Hn = AT (0. The asymptotie value is given by
(5,615

It may be shown®® that the coefficients a(e), fi(c), bir) are related directly
o the predictions (22)-(24) by

= L) (5.6.30)
N
3 ek O (5.6.31)
24 2m N
L1 Ly . R (5.6.32)

w o explegdy) — 1

By (5.4.7) we have ag = o (t = 0), flo = it =1), by = b(r = 0), Using
(307, (1), awndd the resubts (22)-(26), it may be seen that =1y = KT(t) has
the behavior shown in Figure | (drawn for the special case of a cube-shaped
contuiner L, = Ly = Ly). Thus, the non-équilibrium temperature increnses
{although not monatonically), due to the conversion of ordered kinetic
energy into disordered Kinetic energy. (If the 3 sides are not of equal length,
(= (1) will increase somewhat more smoothly than in Figure 1),
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Using (27), the generalized entropy (5.4.4) is given in terms of the coelfi-
cients af(r), fe), bie) by

ERTR 3
) + e Nk = K In (227N 1)

(1) = % Nk]u(

3 ,
+ Nk Z {ln [I — ‘a”L",] 1 = — -‘-E‘,L"_ }

] [ 24 expla,L,) — 1|
(5.6.33)
where V= LiL,Ly is the volume of the box. As 1 -+ oo, CRy =L 12 (by

]

(22) and (23)) and hence (by (32)) &, (1) <+ 0. But the last term of {33) vanishes
as vy, —+ 0, and hence

. ) oy 42 k]
lim S{t) = — Nk | = = -k AN Ay
i (1) 2 [ H(e0) ] + - NE = Eln (M NN {(5.6.34)

where (by (26), (30) and (31)) !

I S 51, 5.6.35)

flw) N P
Equations (34) and (35) are the conventional expressions (or the entrapy and
KT for an ideal gas at thermal equilibrium,

It may be shown®® that the non-equilibrium entropy evolves is in Fig-
ure 2, drawn for the speciol case that L, = L, = E,. (If the three sides are
not of equal length, then the non-monatonic increase shown in Figure 2 will
be somewhat smoother). Figure 2 illustrates the generalized second law

4501}

1%

5(o)]

g
L&

Flgore 5.6-2 Time-dependence of the nor-equilibrium enteopy, The asyimplotic value is
Biven by (5.6.34)
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(5.4.5) and (5.4.6), and nlso shows that S(¢) does not necessarily increase
mionatonically, Tn the presdnt example, oséillntions of S are dug to reflections
at the will as the N particles are reflected ot o wall, the momenta are at first
riprdly disardiered (since some particles have reflected and others have nat):
and then rapidly reordered (as the remaining particlés are reflected). Nole
that the ascillations of 8 ocour on a time seale which is short compared o 1the
relaxation Lime of the system; on the longer time-scale, the trend of Sit)is
pward,

Our iterpretation of the generalized second law (see Seotion 5.5) says
that there is less informuation about « in the predictions (R, <H S, 4P,
than there was in the initial date <R3q. CH g, ¢P3q; furthermaore, there is
less information in the asymptotic predictions

<H};l: = Lﬂrzl- {}I>:l — {'ﬁr}ﬂr {l’>dl :h'u'

than there wis in {RY%,, {H3, (P I N is reasonably large, so that the
predictions are highly likely to agree with experiment; then it is:highly likely
that the experimentad data B, M, P,owill yield less information at time 7 than
avr=0, and less information at ¢ = =0 (ie at any ¢ & r,) than at finite
titnes (1.e. ot times 1 < 1,).

The present expmple ilustrates the faet that, alhoogh closed finite systems
generally relax (in the sense that the distribution funetion converges weakly)
1o equilibrivm, the asymptotic disttibution is not necessarily canomeal;
that 1s, the system need not relax to thermal equilibrivm. Tn fact, the asymp-
totie distribution given by (12), (15), and (18) is an equilibrium distribution
but it §s not canonical; it would be canonical aaly if the initial expected mo-
mentum were zero, Le. only if by = 0; otherwise, the function so(p),}is peaked
around by, This failure to achieve thermal equilibrium is partially due to
our neglect of interactions between particles, and partially due to our neglect
of interactions with the external world. The Hamiltonian (3) possesses 3N con-
stants of the motion, namely the (p,, )" the distribution Tunction g (x, 1) never
“fargers™ the distribution of these constants of the motion, and hence the
asymptotic distribution must retain all the initinl infarmationabout the{p,, )"
The introduction of a small interaction between the particles (for instance, a
smiall bul finite particle radius, so that particles could collide) should destroy
these constants of the motion so that the only remaining constant of the mo-
tion would then be H{x), The asymptotic distribution (to which g (x, ) is
weakly convergent) would then depend only on H(x), and would retain the
initial information about vk But this distribution would still be non-
canonical, since according 1o (5) the energy is not canonically distributed
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initially. The introduction of an appropriste internction with the external
world would then, presumably, rearrange the encrgy disteibution in such a
way that ¢ would converge weakly o the canonical distribution.

If the interactions between particlzs, and the interaction with the external
world, are sufficiently small, then the relaxation to u final canonical distribu-
tion will vecur over @ time which is long compared to the time v, (given by
(19)) Tar the system to relax to the non-canonical distribution given by (135)
and (18). In this case, the system will first relax too,,(x) given by (15)and (18)
and then g,,(x) will grudually refax to the canonical distribution,

All of the results in this Section are valid for arbitrary N, In parficulur,
p converges weakly, und all predictions relax to equilibrium, whether N is 1,
ar 10%2, or w. However, the predictions are likely to be correct (12, to agree
with measured values) only if N s reasonably large. For example, by (22) the
predicted center of mass (R, is entirely independent of N. However, the
statistical varfance in R, is

YR, — (RIS, = #qm.‘. — gL, (5:6.36)

and is highly dependent on N. The dispersion (square root of the variance)
of R, is I!@ Limes the dispersion of ¢, ,. For ¢ = 1, the distribution of g,
is approximately constant over 0 < g¢,, < L, so that the dispersion of ¢,
is approximately L,,J'\fﬁ. Henge, for 1 & 7, the dispersion of R, is .'_’.ﬂhr" 12N,
According 10 the Tehebyche inequality (2.1.45), we can state with high con-
fidence that &, is within a few dispersion distances of (R, 3. Thus, for N = 100
and ¢ & 1, we can predict with high confidence that 04L, < R, < 0.6L,.

If N = 10,000 8nd ¢ = 7,, wecan predict with high confidence that 0.49L,
< R, < O5LL;.

57 IRREVERSIBILITY, COSMOLOGY, AND TIME

We will offer a few observations about the significance of irreversibility in
cosmology and in the concept of time, There exists wnimmense literature on
these questions; for a review of the literature before 1965, see Ref. 25, Our
discussion will be quite briel und restricted @ we look only at those aspects of
cosmology and time which are directly related 10 the ideas developed in this
book,

In order to keep the discussion reasonably simple, assume the unjverse to
be a closed, classical mechanical system, {This assumption is open 1o ques-
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tian, naturally), What does the second law of thermodynamics imply about
this system?!

The first abservation is that the standard second law implies nothing about
this system, sinee the standard second law refers only 1o thermal equilibrium
dud it would obvipusly be innpproprinte (o gttempt to deseribe the universe
by a thermal equilibrium (e, canonical) disteibution,

Thus, we must turn to the generalized second law. But the genernlized seo-
ond law has no content until the observables M have been specified. For the
sike of continuing Uhe argument, suppose that the observables are the mass
densities throughout some finite region R of 3-dimensional space (R might
represent that part of the universe which is observable by a ground-based
astronomer). We will ignore prablems introduced by the finite speed of light,
and assume that the observer is able to make an instantaneous macroscopic
observation of the phase Tunction f(q; x) (q € &) representing the mass den-
sity al q when the mechanical phase point of the universe is x. Thus the
ahserved data has the form

Qs Xm0 = Fl), (5.2.1)

where Flg) is known for all g comained in R.

The generalized second law says that the “disorder 6f the universe with
respeet 1o the observable density™ is highly likely {on the basis of data mea-
sured at £ = 0) to be greater at a later time ¢, than it was at ¢ = 0. That i3, for
an observer who is able to measure the macroscopic density throughout R,
it is highly likely (on the basis of a measurement at r = 0) that the density
will be more uniform (e nearer to g constant through K) at later times, Thus
it is highly Tikely, on the basis of presently known data, that the density
throughout R will be more uniform in the future than it is now. This does not
contradict the Poincaré recurrence theorem, which asserts that eventually
the universe will return to a mechanical stofe approximately equal to its
present state, On the basis of any reasonable presently measured data about
the mass density it is highly likely (although not certain!) that the recur-
renee time will be very long.

Thus, on the hasis of known data, the universe is highly likely to be more
“run down” (Le. have o more uniform density) in the future than at present.
But note thit this s only 'a probabilistic statement. There may be circum-
stances which are relevant 1o the future behavior of the aniverse but which
da not appear in the known dati, and which imply that tomorrow morning
the ymiverse will begin evalving toward o more ordered State with respect 1o
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the density in the region R (see Section 3.7} Furthermore, it is certain {ac-
gording to Poincard’s recurrgnee theorem) thal thisevalution towird o more
ardered stave wilf eventually veeur. Our measuring instruments aren't suffi-
ciently sensitive 10 pick up information aboul wher Lhis will ocour, so our
statements about the expected future behavior of the universe cannot contain
predictions about an eventual evolution toward a more ordered siae,

Coneerning the concept of time, 1018 clear that the generalized second liw
is related in some manner 1o the question of the “direction”™ ol rime, 11 is
sometimes usserted that the second law explains the distinction betwean past
anil future, or that the Tutuee may be delimed s the divection of Inereasing
entrapy. This assertion soys that the second low 15 more fundamentul than
the distinetion between past and future,

It seema to the author that the above assertion s wrong. I was seen in
Section 5.2 thot the generalized second low is decived feorm the distinetion
between past and future; hence the distinetion between past and future is
more fundamental than the second law,

The following stement seems to be the mast fundamental phiysical asser-
tion which can be made regarding past and future: we cin ¢lassify all in-
stants ¢ into two categories; the first cutegory Containg those instants ahout
whichexperimental dati s (or could be) known, and the second category con-
tains those instants aboul which no experimental dula Is known, The lirst
category. i$ conventionully called the “past™ and the second s called the
“luture™. The instants may be labeled with real numbers running from — w0
to < oo, in such o way that the “past™ instanis constitute g seél ol the form
(—ao < 1< to), und the *Tuture” instanis conslitule the set (1, < £ < ).
The choice of the positive direction as the future is purely & convention.

According to Sections 5.2 and 5.4, irreversibility and the generalized sec-
ond law are derivablé From the existence of the above two categories of in-
stants: dn “information-gathenng category™ (the past), and o “predictive
vategory™ (the future). The existénce ol these two categorics seems Lo be 4
fundurentil feature of nature, not explimable in terms of the second law or
in deoms of any oller pliysical luw,
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AFPPENDIX A

Proof of the Unigqueness Thearem

We wiLL sow that the only Tunction satisfying postulates (2.3.4), (2.3.5),
(2.3.6), (2.3.7), and (23.10) is & gy W fpfpy). Shannon!, Felngiein®, Khin-
chin® and others huve proved o similar (but less complicaled) undqueness
thearem for Shannon's mformation measure (2,320 Portions of the presenl
proof will follow Feinstein® and Khinchin®.

W lirst shaw th

L TERE TR "H Bl o U MPR N i i T

L
s “‘;._{ .{_.ahl".f(_””—ll __r&.._:"_)
a1 A=ty iy iy

(A1)
FProaf: By postulate (230100, with @ = ¢, +  + 4,1,
I @useeer @ioe) = 10 s + 003 =) + @f(ﬂ.....‘i'l'—!;...)
0 o
o+l + rmf( faur, i ) (A2}
= +'qa1 i i + iy

Again using postulate (2.3.10),

(@ 0ses Govas Qimr F Gadions)

= Qe y + i) + QGO ia @a Qi) F (=g + gl Iyl
(A3)

By postulire (2060, 200 1y == 00 Conpbaning 020 snd O30 we abrain (1),
Mext, we shiow '

LBy oon PiwesissPivnsoss Piiiis w3

L1

=T(gqyioinie) ‘1._1 Sl AP lifes oon Pimlilis <o) (A.4)

=
® Coneerning  the nototion: Theee dots oppepog to e ight of e seodcolim will
abwiys mean Chag thic vanables on the right aee ddentical with those oo the Ten, only: with

the super-script 0" attached, Tor instance, J0pg e cdmenns Lipgs pa pt, e,
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where g, = p,y, + - + py,. Progf: By postulate (2.3.10), equation (4) holds
for st = 2. We proceed by induction, Assuming (4) lolds for o,

”Pr:- rery flime '"tFu'@-I.Ir cerndugnomi }

f=1
=Tl sy d s Qi F Baeis e + 3 4:1(&"“."-.&1‘:".)
b= C i q

PG+ Fosa) %

. ll( Pul s Iﬂﬁﬂl * Fﬁl-l.l Pﬂ+1.m . )
— L jasey ——tll e T
i+ g o T Quiy Gy T e tn F b s

(A.5)
By (1), the first term an the right hand side of (5) may be writien
”#:u----%-ﬁnni--J“fff.q+§|".+|}lf( L + fue; :...).
ot Qo ot Fagy

By postulute (2.3.10), the last term on the right hand side of (5) may he
wittien

h?ll-i' ?n-rllf( qﬂ L qﬂ'?' i-vi) +qn-f(":;"’u‘|---|£&:...)
Pt ust Hat Gar G iy

+ IP'TH'J-I(F“‘JJ asey PIH"P:II: ---)"
ot 1 Tt i

Substituting these expressions info the approprinte places in (5), we oblain (4)
fow i+ 1, Thus (4) halds for every a.
Define
SUrirad = L0 e oo e 0, 005 Urg oy 1rg)i* (AD)

By (4), with m = ry and n = 5,
Ty = e coss e = W Py et =04 veey Parg =07 0 0e Bin = WiFi vrrs
Pop = 108, ey =0, oy Py = 0, Payin = Diaey fluge, = 0
HeaSu eeny Hross) |
= T LS, ey 10, o0 O3 Ty, iy 188D
b QUSY LCUr oy U O,y 03 gy oeey HEa)

* The symbols ¢, roy 5 g, will always mean positive integers, with rg = r and 55 = 5,
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Using (6) and postulate (2.3.5), this becomes
s, rosg) = fs, %0) + flr, ry)- (A7)
By (T and postulate (1.3.6),
Slrs, rag) = fUs, 30} + firor) = fls, 54)- (AB)
Letting rofr = rofre = u, (8) implies
Sleora) = fir,ur) = fir, rorle') = Jir'e, ror) nﬂ,’p"“,rr]}, (A0
Equation (9) says that f(r, ry) depends only on the ratio rgfr. Thus
& (ralr) = flr, vg) (A1)

defines u single-valued function glx), defined For every rtivnal x = 1 By (10)
and (7), defining x = rg/rand X' = rgft’,

g (xx'y = glrorafer’) = fire', rara) = flr, va) -+ fle' 1) = g Graled + 2 (rife).

Thus
g (xx') = glx) + glx") (A1)

for every rational x = Land x' = 1. By postulate (2.3.7), glx) is w monotonie
inerensing fundétion.
We now show (hat

flryro) = g lralry = & n (rafr) (A.12)
where & is a positive constant. Proaf: By (11),
glra) = ng (rp)- (AL

Letintegers #, rg, 5, be given arbitrarily,and let the integer s be determined by

m = nlnsy/Ineg < m4 1 (A1)

from which
v &4y <of™ (A.15)
min < Inosgflnrg < (m 4 1o, (A 16)

Since g is maonotanie increasing, (13) and (15} baply
mig (ry) = ng(sg) = (m 4+ 1) girad,
so that
mfin < glsghlelre) < (m + Lin, (A7)
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I
By (16) and (17), H[-""n}_ ) M

#lre) I ry

<=
"

(A.18)

Since the left hand side of (18) is independent of m, and since i can be chosen
arbitririly large, (18) implics that

Hlsa)elre) = Ingg/lnry
glre) = klnry. (A19)

Since g is monotonic increasing, the constunt & must be positive, This proves
(121 fur r = 1 and any ry. By using precisely the same reasoning as was used
in abtaining (19, it can be shown that

g(r . l) =kin (1!). (A2
v r

(Simply replacerg by {r + 1)frand 5, by (s + 1)/s; equations (1) through (19
all rernain valid under this replacement). We now prove (12) by induction
ar . Assuine (123 i valid for (¢, r). Then, by (11 and {20),

R
(o)) ) ()

Hence, if (123 holds for (rg, #) then it holds for (rg, 7+ 13, But by (193,
equation (12) holds for (g, 1). Hence (12) holds for all (rg, ).

Let poand p® be rational numbers less than or equal to 12 p = rls < 1,
P = rol¥y = 1,10 the three conditions v, = ¢, % = s, and g5 — rg = §=r
do not hold for the choice (r, 5, 7o, #0), then teplace (rg, 85) by (irg, 15),
with n sufficiently large that the three conditions hold for (r, s, mra, nso).
This replacement does not affect p or p°. Hence it may be assumed, without
loss of generality, thit r, = r, 8, = 8,8, — ry = & — r. By postulate (2.3.5)
and equation (4), with appropriate grouping of the yariables,

TSy ey 1500, aey 03 fbay ves 1/85)
= {lrfs, (8 — PYus rolso, (5o — radlse]
R LU ey 1 05 ey 0 1y, —any 1Fe)
+ (8= P I [L =Y eey (=), 0, Loy 03 1085 =1g)s i
/(89— ry))-

bT
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By (6) and (12}, this becomes
Hip, 1=pip® L= p") = fis, 50) = pfir, re) = (1= p) fls—r, 85— 1)
= kp In (plp®) + k(1 = p) In [(1 = pyil = p™M].

By continuity {postulate (2.3.4)) this result extends wo all ireational g, This
proves the theorem for = 2. Using (1), the theorem follows by induction
on .
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APPENDIX B

Proofs of (3.6.7.) and (3.6.8.)

SINGE THE DATA of (L6.7) is symmetric, o (x, 0) must be symmetric. Assune
that o' (q, p) satisfies the dota, and define

N
flx) = Fg oM g p)- (B.1)

Let g(x) be any other symmaetric distribution having o' as its reduced distri-
bution:

fulx)ds, ..., diguelpy, <o dpy = ¢, p).
[ () In fxy dx = ‘7_‘"_, J et In gt g, py) ilx
=3 ot g, pid In ot (g, o) el dpy

= fﬂx}lnﬂx} ilx.
Henee, using (3640 with /YN 1L N = K,

Then

U — el = Ig{x} In [Le{a)] s — '[ Slx) I [Lf(x)] dy

gl(x) :
= X Sl v =T e
J.g{t‘jln [,m-']] v Ief)

(see (2.3.14)). Thus, by (2.3.15), U[f] = U[g] with eguality only if f() and
g{x) are identical. Thus any distribution g(x) satistying the data but nat hav-
ing the form (1) cannot extremize . Thus the extremizing distribution must
have the form (17

The result (3.6.8) will be proven only for the case k = 1, and for a system
huving only one degree of freedom; the general result then follows fairly
gasily, The given information concerns only the phase functiondg g, p), and
hence ean be expressed entirely in terms of the probability density o for
@ (i, p). Assuming gy(ih) satisfies the datu, define the distribution '

Hg.p) = ey ldlg. plls (B.2)
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where ¢) is a normalizing constant. We will show that a ny ather distribution
&gy 2D, having oy as its rediced distribution Tor o il bl noe having 1y
form (2), must hive a smaller uncertainty than the distribution defined by {21,
Tt will then follow that, of all distributions satisfying the given informarion
eoncerning o (g, p), the one Having the grentest uncertninty hos the form (2)
and hence is functionally dependent on i Lig, pbs

Let g{q, p) be any other distribution having the same reduced density
fori:

pald) = lim —I-

J 2 (g, p) gy, (B.3)
A= ]1# B i e g b A

Define a change of variubles (g, p) - (g’ p'). wherg

¢ =glap), = 0igp), (B.4)

where the function (g, p) is chosen in such a way thal the Jacabian J i, 1)
of the transformation is identically 1. This is always Pessabli; for-any given
® (g, p) the condition o = | js fust o partial differentinl equalion for 0 (g, p).
Note that the transformation needn’t be canonieal, e (g, p') needn't be
canonical variables, Under this transformation, the density (2) transforms
into
UG = e (g"). (B.5)
By (3), using.J = 1, the transformed densis Y &g, ) sutishiey
fetaspydy = nyg. (1.6)
Using (5), (6) and J = 1, we find that
J &g, p) In fig, #) el dlp = [ flen p) In fla, P ddeg elp.

Hence, as in the proof of {3.6.7), Ulf] = Ulg], and the extremizing function
must have the forni (2), [y generalizing this result to the case of arbitrary k
and maore than ane degree of freedom, it should be noted that the required
condition.J = 1 can be fulfilled only if thed () are functionally independent,
since otherwise J = 0; thut is. the functions thilx) can be nsed us new vari-
ables wrly if they ane Tunctionally independen.

APPENDIX. C

Proof that Discrete Classical Mixtures
are Almost Periodic

The proor will follow Ref. 10 of Chapter 5. The initial distribution for the
discrete mixture “x; with probability p,” is

afx, t=0)=%pnd(c—x). (A
By (3.3.3), the distribution al time ¢ s
o f:l'.'. t) = g:j'li il [.'I: - X “l.-'ﬁ” i ECZ}

where X (r]vy) is the pluse point at ¢ corresponding to the inbial point x,.
Expectation values are

Gl = [alxde (x, Ny = '%:g [X (] x0)] pi. (C.3)

We will show that, if g{x) is continuous and il g [X (] x)] is bounded for
all - and all k (s will ceetainly hald if glx) is a hounded function), then
the expectation vilue (3) is un almost perivdic Function of time,

By the Palncaré recurrence thearem (5.1.3), the phase motion X (¢]x,) is
almost periodic, e, X (¢]x,) keeps ref uming arbitrarily near to x, . Since glv)
is g eontinuous function, it follows tht g X () 0] keeps returning arbitrur-
iy near to gla), sothat g [X (f]x)] s nlmaost periodic. By (2), {g(x)>, is then
wsum of almost periodic functions,

A basic theorem of almost perindic functions says that any umiformly
convergent sum of almost petiodic fonctions is itself almost periodic, Thus,
our prool will be complete ift we can show that the sum (3) is uniformly con-
vergent on (—o < ¢ < ). By assumption, [p [X (| x)]l is bounded by
some sumber A for all (4 &), Thus |pee [X (t1xa )l is bounded for all ¢ by
My=pM. BulXM, =X MM = M isconvergent, Thus, by Weilersirass's
M test, thie sum (3) is uniformly convergent on (—on < 1 < o).

Thus, initial distributions which are discrere Tead 1o predictions which are
almust periodie,
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APFPENDIX D

Proof and Discussion of (5.3.2.)
(Almost-Periodicity of Quantum Statistical
Mechanics)

WE wisu 1o rrovE that di1) keeps returningarbitrarily near to 401, where the
“distance™ () — (0)] is defined by

Jd[* = Tr (A" A). (0.1)
We will follow Percival's proof (Ref. 9 of Chapter §), Define the uperitiors
daalt) = 10, CH) Ge) L1 <) (13.2)

where the [H) are energy eigenvectors. Using (4.3.6),

b v} s
fir) ﬂjf_,; 12’:. auli)

all o
= 2 L dal0)exp Guy) (D.3)

where wy, = (Hy — H)h. Thus §(e) is a “generalized Fourier series” {i.e.
a discrete sum of sine and cosine terms, where the froquencies need not be
integral multiples of a fundamental frequency) with operatar coetficients,

Any generalized Fourier serics which is uniformly convergent, and which
has numerical cocfficients, is almost periodic (see Ref. 1 of Chapter 5). Boch-
ner® his generalized this busic result to include series whose coefficients are
elements of a metric space. Bochner's generalization applics to (3); where the
coeflicients [,,(0) are elements in the metric space in which distance is de-
fined by (1),

The proof will be complete 'when we huve shown that (3) converges uni-
formly on (= w < ¢ < ), Consider the finite sum

u Ll

[:“’ff:l = }: £1 g;;“]

F T

Ita

Preat and Discussion of (3.9 167

as an upproximation 1o (3 We know that §™Y) converges to d(t) as i = a@.
The guestion is: does §"™(1) converge wiformly to iy on(=o < ¢ < «)?
The sguare of the “error™ is

- i L] ] iy Ll o
[y =@ 0l =1 ¥ ¥ a0+ Y ¥ w0+ Y Y dun
I kwpwl J=i k=pel FETEEN T

Ao
€ L]

- Z E i gutell? +J§| tgul-ﬁu“]]!

N ] b

. &
b }‘_, loulrl?
Japel ksl
i li IL ﬂ.l.
=Y % ldaOP+ ¥ Y (a0
FETEE N T | Ju1 kmn i

N - "-.- o . J.

.I"J}-;-I ] IE'.J |Hﬂ|{ ]t

The secand equulity follows from the orthogonality of the 8,(¢):
Tr ﬁ.ﬂ'i‘é.llli = |ful® ppdhae

The third cquality follows from 8,,(¢) = §,00) exp (i), Thus the error is
independent of £, and can be made as small as desired (for ali 1) by taking n
sufficiently large. Thus (3) converges uniformly on (—@ <t < ). This
proves (3:3.2),

Almaost periodicity means that

Jd(r) — GO = Te {[g"(r) — 4N [d(x) — (0]}
= ng FOHL ) | HG — LG 800) |10 (D)

may be mude us small as desired simply by choosing the “recurrence time™ =
appropriately. Bince the summand of (4) is non-negative, all of the matrix
clements CH| dir) |[H must stmidtanconsly return near to <H,) a(0) 11,5
Iintuitively, this implies that all expectation values {45, keep returning near
to their initinl values. (For a rigorous proof, see Ref. 3 of Chapter 5).
Almost-periodigity depends on the assumptions that (i) 4(0) has a discrete
spectrum (Le. a(0) Is a mixture over a diserete sét of possible states), and
(i) the eoergy spectrum is diserete. 0 (i) doesn't hold, then we must use the
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eigen-differential formalism (see Ref, 10 of Chapter 5), and the above ans-
lysis breaks down. I (i) doesn't hold, then §(t) is no longer the diserere
sum (3).
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