T3-Stern-Gerlach Matter-Wave Interferometer


  Omer Amit [1]  ,  Y. Margalit [1]  ,  O. Dobkowski [1]  ,  Z. Zhou [1]  ,  Y. Japha [1]  ,  M. Zimmermann [2]  ,  M. A. Efremov [2]  ,   F. A. Narducci [3]  ,  E. M. Rasel [4]  ,  W. P. Schleich [2;5]  ,  R. Folman [1]  
[1] Department of Physics, Ben-Gurion University, Be'er Sheva, Israel
[2] Institut fur Quantenphysik and Center for Integrated Quantum Science and Technology (IQST ), Universitat Ulm, Ulm, Germany
[3] Department of Physics, Naval Postgraduate School, Monterey, USA
[4] Institut fur Quantenoptik, Leibniz Universitat Hannover, Hannover, Germany
[5] 5Hagler Institute for Advanced Study at Texas A&M University, Texas A&M AgriLife Research, Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA

The Stern-Gerlach (SG) [1] effect of 1922 is a paradigm of quantum mechanics and allows an illuminating glimpse into the inner workings of this theory. Moreover, it arguably marks the birth of atom interferometry. Indeed, the splitting of an atomic beam by a magnetic field gradient served as the starting point for David Bohm and Eugene Paul Wigner in their discussion of the coherence in a SG interferometer (SGI). We report on the successful implementation of an SGI utilizing the strong and accurate magnetic field gradients [2, 3] provided by the currents in the wires of an atom chip [4]. Our SGI is unique in three aspects:
(i) Although the gradient fields act on the atom continuously during its flight through the interferometer, as in the Humpty-Dumpty configuration [5], we obtain a remarkably high contrast.
(ii) The observed phase shift scales [6] with the cube of the time the atom spends in the SGI, and thus represents the first interferometric measurement of the Kennard phase [7] predicted in 1927.
(iii) The lack of light pulses to split and recombine the beams in combination with the Kennard phase makes our interferometer a perfect probe for magnetic as well as other properties of surfaces.

References
[1] W. Gerlach and O. Stern, “Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld.”
Z. Phys. 9, 1 (1922).
[2] S. Machluf, Y. Japha, and R. Folman, “Coherent Stern-Gerlach momentum splitting on an atom chip.” Nat. Commun. 4, 2424 (2013).
[3] Y. Margalit, Z. Zhou, O. Dobkowski, O. Amit, Y. Japha, D. Rohrlich, S. Moukouri, and R. Folman, “Realization of a complete Stern-Gerlach interferometer.” arXiv:1801.02708 [quant-ph] (2018).
[4] M. Keil, O. Amit, S. Zhou, D. Groswasser, Y. Japha, and R. Folman, “Fifteen years of cold matter on the atom chip: promise, realizations, and prospects.” J. Mod. Opt. 63, 18 (2016).
[5] B.-G. Englert, J. Schwinger, and M.O. Scully, “Is spin coherence like Humpty-Dumpty? I. Simplified treatment.” Found. Phys. 18, 1045 (1988).
[6] M. Zimmermann, M. A. Efremov, A. Roura, W. P. Schleich, S. A. DeSavage, J. P. Davis, A. Srini- vasan, F. A. Narducci, S. A. Werner, and E. M. Rasel, “T 3-interferometer for atoms.” Appl. Phys. B 123, 102 (2017).
[7] E. H. Kennard, “Zur Quantenmechanik einfacher Bewegungstypen.” Z. Phys. 44, 326 (1927).